【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延長A1C1至點P,使C1P=A1C1 , 連接AP交棱CC1于點D. (Ⅰ)求證:PB1∥平面BDA1;
(Ⅱ)求二面角A﹣A1D﹣B的平面角的余弦值.
【答案】解:以A1為原點,A1B,A1C,A1A分別為x軸,y軸,z軸正方向,建立坐標系, 則A1(0,0,0),B1(1,0,0),C1(0,1,0),B(1,0,1),P(0,2,0)
(Ⅰ)在△PAA1中,C1D= AA1,則D(0,1, )
∴ =(1,0,1), =(0,1, ), =(﹣1,2,0)
設平面BDA1的一個法向量為 =(a,b,c)
則
令c=﹣1,則 =(1, ,﹣1)
∵ =1×(﹣1)+ ×2+(﹣1)×0=0
∴PB1∥平面BDA1
(Ⅱ)由(I)知平面BDA1的一個法向量 =(1, ,﹣1)
又 =(1,0,0)為平面AA1D的一個法向量
∴cos< , >= = =
故二面角A﹣A1D﹣B的平面角的余弦值為
【解析】以A1為原點,A1B,A1C,A1A分別為x軸,y軸,z軸正方向,建立坐標系,則我們易求出各個點的坐標,進而求出各線的方向向量及各面的法向量.(I)要證明PB1∥平面BDA1 , 我們可以先求出直線PB1的向量,及平面BDA1的法向量,然后判斷證明這兩個向量互相垂直(II)由圖象可得二面角A﹣A1D﹣B是一個銳二面角,我們求出平面AA1D與平面A1DB的法向量,然后求出兩個法向量夾角的余弦值,得到結論.
【考點精析】通過靈活運用直線與平面平行的判定和直線與平面平行的性質,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)y=f(x)與y=g(x)的圖象如圖所示,則函數(shù)y=f(x)g(x)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)= ,其中 =(2cosx,﹣ sin2x), =(cosx,1)(x∈R).
(1)求f(x)的周期和單調遞減區(qū)間;
(2)在△ABC 中,角A、B、C的對邊分別為a,b,c,f(A)=﹣1,a= , =3,求邊長b和c的值(b>c).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的固定成本(固定投入)為2500元,已知每生產(chǎn)x件這樣的產(chǎn)品需要再增加可變成本C(x)=200x+x3(元),若生產(chǎn)出的產(chǎn)品都能以每件500元售出,要使利潤最大,該廠應生產(chǎn)多少件這種產(chǎn)品?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)招聘大學畢業(yè)生,經(jīng)過綜合測試,錄用了14名女生和6名男生,這20名學生的測試成績?nèi)缜o葉圖所示(單位:分),記成績不小于80分者為等,小于80分者為等.
(1)求女生成績的中位數(shù)及男生成績的平均數(shù);
(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團隊”,則從等和等中分別抽幾人?
(3)在(2)問的基礎上,現(xiàn)從該“創(chuàng)新團隊”中隨機抽取2人,求至少有1人是等的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的一年收益與投資額成正比,其關系如圖(1);投資股票等風險型產(chǎn)品的一年收益與投資額的算術平方根成正比,其關系如圖(2).(注:收益與投資額單位:萬元)
(1)分別寫出兩種產(chǎn)品的一年收益與投資額的函數(shù)關系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎么分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】log0.72,log0.70.8,0.9﹣2的大小順序是( )
A.log0.72<log0.70.8<0.9﹣2
B.log0.70.8<log0.72<0.9﹣2
C.0.9﹣2<log0.72<log0.70.8
D.log0.72<0.9﹣2<log0.70.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四人進行選擇題解題比賽,已知每個選擇題選擇正確得分,否則得分.其測試結果如下:甲解題正確的個數(shù)小于乙解題正確的個數(shù),乙解題正確的個數(shù)小于丙解題正確的個數(shù),丙解題正確的個數(shù)小于丁解題正確的個數(shù);且丁解題正確的個數(shù)的倍小于甲解題正確的個數(shù)的倍,則這四人測試總得分數(shù)最少為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司共有職工1500人,其中男職工1050人,女職工450人.為調查該公司職工每周平均上網(wǎng)的時間,采用分層抽樣的方法,收集了300名職工每周平均上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時)
男職工 | 女職工 | 總計 | |
每周平均上網(wǎng)時間不超過4個小時 | |||
每周平均上網(wǎng)時間超過4個小時 | 70 | ||
總計 | 300 |
(Ⅰ)應收集多少名女職工樣本數(shù)據(jù)?
(Ⅱ)根據(jù)這300個樣本數(shù)據(jù),得到職工每周平均上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:,,,,,.試估計該公司職工每周平均上網(wǎng)時間超過4小時的概率是多少?
(Ⅲ)在樣本數(shù)據(jù)中,有70名女職工的每周平均上網(wǎng)時間超過4個小時.請將每周平均上網(wǎng)時間與性別的列聯(lián)表補充完整,并判斷是否有95%的把握認為“該公司職工的每周平均上網(wǎng)時間與性別有關”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com