【題目】已知函數(shù)

當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實(shí)數(shù)m的取值范圍.

【答案】(1)見(jiàn)解析; (2).

【解析】

(1)根據(jù)函數(shù)單調(diào)性的證明的定義法,取值,做差,若, 判符號(hào);(2)方法一,將問(wèn)題等價(jià)于 恒成立,轉(zhuǎn)化為軸動(dòng)區(qū)間定的問(wèn)題;方法二,變量分離,轉(zhuǎn)化為 恒成立,轉(zhuǎn)化為函數(shù)求最值問(wèn)題.

(1)當(dāng)時(shí),,此時(shí)上單調(diào)遞增,證明如下:

對(duì)任意的,若

,

,故有:,

因此:,,

故有上單調(diào)遞增;

(2)方法一:不等式上恒成立

,對(duì)稱軸

當(dāng)時(shí),對(duì)稱軸

上單調(diào)遞增, ,

滿足題意,

當(dāng)時(shí),對(duì)稱軸,

上恒成立,

解得:,

綜上所述,實(shí)數(shù)的取值范圍為.

方法二:不等式上恒成立

。

由結(jié)論:定義在上的函數(shù),當(dāng)且僅當(dāng)時(shí)取得最小值.

。

當(dāng)且僅當(dāng),即時(shí)函數(shù)取得最小值.

,即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,四邊形是正方形,

(1)證明:平面平面;

(2)若的中點(diǎn),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個(gè)點(diǎn),CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

(1)求證:AC是∠DAB的平分線;
(2)求證:OF∥AG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a0且滿足不等式22a+1>25a﹣2

(1)求實(shí)數(shù)a的取值范圍;

(2)求不等式loga(3x+1)<loga(7﹣5x);

(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廣場(chǎng)舞是現(xiàn)代城市群眾文化、娛樂(lè)發(fā)展的產(chǎn)物,其兼具文化性和社會(huì)性,是精神文明建設(shè)成果的一個(gè)重要指標(biāo)和象征.2015年某高校社會(huì)實(shí)踐小組對(duì)某小區(qū)跳廣場(chǎng)舞的人的年齡進(jìn)行了凋查,隨機(jī)抽取了40名廣場(chǎng)舞者進(jìn)行調(diào)查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.

(1)估計(jì)在40名廣場(chǎng)舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場(chǎng)舞者年齡的中位數(shù)和平均數(shù)的估計(jì)值;
(3)若從年齡在[20,40)中的廣場(chǎng)舞者中任取2名,求這兩名廣場(chǎng)舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對(duì)數(shù)的底數(shù).

(1)求實(shí)數(shù)的值;

(2)探究函數(shù)上的單調(diào)性,并證明你的結(jié)論;

(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬(wàn)元,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),它們與投入資金萬(wàn)元的關(guān)系分別為,,(其中,,都為常數(shù)),函數(shù)對(duì)應(yīng)的曲線,如圖所示

(1)求函數(shù)、的解析式;

(2)若該家庭現(xiàn)有萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線 )的焦點(diǎn)為 ,已知點(diǎn) 為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足 .過(guò)弦 的中點(diǎn) 作拋物線準(zhǔn)線的垂線 ,垂足為 ,則 的最大值為__________

【答案】1

【解析】設(shè),在三角形ABF中,用余弦定理得到

,

故最大值為1.

故答案為:1.

點(diǎn)睛:本題主要考查了拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義。一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來(lái)處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化。

型】填空
結(jié)束】
17

【題目】設(shè) 的內(nèi)角 , , 所對(duì)的邊分別為 , ,且 , .

(1)當(dāng) 時(shí),求 的值;

(2)當(dāng)的面積為 時(shí),求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為奇函數(shù),為偶函數(shù),且

函數(shù)的解析式;

用函數(shù)單調(diào)性的定義證明:函數(shù)上是減函數(shù);

關(guān)于的方程有解,求實(shí)數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案