己知橢圓的離心率為,是橢圓的左右頂點(diǎn),是橢圓的上下頂點(diǎn),四邊形的面積為.
(1)求橢圓的方程;
(2)圓兩點(diǎn).當(dāng)圓心與原點(diǎn)的距離最小時(shí),求圓的方程.

(1)  (2)

解析試題分析:解:(1)依題意有: ①            2分
四邊形是以橢圓的四頂點(diǎn)為頂點(diǎn)的菱形
可得:、               4分
由①、②解得:所以橢圓的方程為:        6分
(2)依題意得
可得的垂直平分線的方程為: ③       8分
圓心上,當(dāng)圓心與原點(diǎn)的距離最小時(shí),
可得的方程為、                         10分
聯(lián)立③、④得,即         12分
由此可得  ,
所以圓的方程為:    14分
考點(diǎn):橢圓方程,圓的方程
點(diǎn)評:解決的關(guān)鍵是利用橢圓的幾何性質(zhì)來得到其方程,同時(shí)能借助于直線與圓的關(guān)系來得到圓的方程,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)為,過焦點(diǎn)且不平行于軸的動(dòng)直線交拋物線于兩點(diǎn),拋物線在兩點(diǎn)處的切線交于點(diǎn).

(Ⅰ)求證:,,三點(diǎn)的橫坐標(biāo)成等差數(shù)列;
(Ⅱ)設(shè)直線交該拋物線于,兩點(diǎn),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是橢圓的左、右焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓上,線段與y軸的交點(diǎn)M滿足
(Ⅰ) 求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ) 圓O是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點(diǎn),當(dāng),且滿足時(shí),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知平面內(nèi)一動(dòng)點(diǎn)到點(diǎn)的距離與點(diǎn)軸的距離的差等于1.(I)求動(dòng)點(diǎn)的軌跡的方程;(II)過點(diǎn)作兩條斜率存在且互相垂直的直線,設(shè)與軌跡相交于點(diǎn),與軌跡相交于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的兩個(gè)焦點(diǎn)為的曲線C上.(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)EF,若△OEF的面積為求直線l的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,經(jīng)過點(diǎn)的動(dòng)直線交拋物線于點(diǎn),.
(1)求拋物線的方程;
(2)若(為坐標(biāo)原點(diǎn)),且點(diǎn)在拋物線上,求直線傾斜角;
(3)若點(diǎn)是拋物線的準(zhǔn)線上的一點(diǎn),直線的斜率分別為.求證:
當(dāng)為定值時(shí),也為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
(3)過原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過點(diǎn)且方向向量為的直線交橢圓兩點(diǎn),交軸于點(diǎn),且

(1)求直線的方程;
(2)求橢圓長軸長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案