點(diǎn)M在橢圓數(shù)學(xué)公式(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F.
(I)若圓M與y軸相交于A、B兩點(diǎn),且△ABM是邊長為2的正三角形,求橢圓的方程;
(II)已知點(diǎn)F(1,0),設(shè)過點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí),恒有|OC|2+|OD|2<|CD|2成立,求實(shí)數(shù)a的取值范圍.

解:(I)∵△ABM是邊長為2的正三角形,∴圓的半徑r=2,
∴M到y(tǒng)軸的距離
又圓M與x軸相切,∴當(dāng)x=c時(shí),得,∴
∵a2-b2=c2,
∴a2-3=2a,解得a=3或a=-1(舍去),則b2=2a=6.
故所求橢圓方程為
(II)①當(dāng)直線l垂直于x軸時(shí),把x=1代入,得
∵恒有|OC|2+|OD|2<|CD|2,∴
解得(舍去),即
②當(dāng)l不垂直x軸時(shí),設(shè)C(x1,y1),D(x2,y2),
直線AB的方程為
得(b2+a2k2)x2-2a2k2x+a2k2-a2b2=0,

∵恒有|OC|2+|OD|2<|CD|2,∴x12+y12+x22+y22<(x2-x12+(y2-y12,|OC|2+|OD|2<|CD|2恒成立,得x1x2+y1y2=x1x2+k2(x1-1)=(1+k2)x1x2-k2(x1+x2)+k2=,
由題意得,(a2-a2b2+b2)k2-a2b2<0對(duì)k∈R恒成立.
當(dāng)a2-a2b2+b2>0對(duì)k∈R不是恒成立的.
當(dāng),恒成立.
當(dāng)a2-a2b2+b2<0時(shí)恒成立,∴a2<a2b-b2,即a2<(a2-1)b2=b4,
∵a>0,b>0,
∴a<b2,即a<a2-1,
∴a2-a-1>0,解得,即
綜上,a的取值范圍是
分析:(I)根據(jù)正三角形的性質(zhì)可求得圓的半徑,及M到y(tǒng)軸的距離,進(jìn)而根據(jù)圓M與x軸相切求得,求得a和b的關(guān)系式,進(jìn)而根據(jù)c=求得a和b,則橢圓的方程可得.
(II)先看當(dāng)直線與x軸垂直時(shí),把x=1代入橢圓方程求得yA的表達(dá)式,進(jìn)而根據(jù)|OC|2+|OD|2<|CD|2恒成立求得a的范圍;再看l不垂直于x軸時(shí),設(shè)C(x1,y1),D(x2,y2)及直線方程,把直線方程代入橢圓方程消去y,根據(jù)韋達(dá)定理求得x1+x2和x1x2的表達(dá)式,根據(jù)|OC|2+|OD|2<|CD|2恒成立,看當(dāng)當(dāng)a2-a2b2+b2>0對(duì)k∈R不是恒成立的.當(dāng),恒成立.當(dāng)a2-a2b2+b2<0時(shí)恒成立,進(jìn)而推斷出a2<(a2-1)b2=b4,求得a的范圍.最后綜合可得答案.
點(diǎn)評(píng):本題主要考查了直線與圓錐曲線的綜合問題.直線與圓錐曲線的綜合問題是支撐圓錐曲線知識(shí)體系的重點(diǎn)內(nèi)容,平時(shí)應(yīng)加強(qiáng)訓(xùn)練.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年臨沂一模理)(12分)

已知點(diǎn)M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F。

(1)若圓M與y軸相交于A、B兩點(diǎn),且△ABM是邊長為2的正三角形,求橢圓的方程;

(2)若點(diǎn)F(1,0),設(shè)過點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí)恒有|OC|2+|OD|2<|CD|2,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年山東省臨沂市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

點(diǎn)M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F.
(I)若圓M與y軸相交于A、B兩點(diǎn),且△ABM是邊長為2的正三角形,求橢圓的方程;
(Ⅱ)已知點(diǎn)F(1,0),設(shè)過點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí),恒有|OC|2+|OD|2<|CD|2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國高考數(shù)學(xué)領(lǐng)航試卷4(理科)(解析版) 題型:解答題

點(diǎn)M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F.
(I)若圓M與y軸相交于A、B兩點(diǎn),且△ABM是邊長為2的正三角形,求橢圓的方程;
(Ⅱ)已知點(diǎn)F(1,0),設(shè)過點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí),恒有|OC|2+|OD|2<|CD|2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省丹東市高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:解答題

點(diǎn)M在橢圓(a>b>0)上,以M為圓心的圓與x軸相切于橢圓的右焦點(diǎn)F.
(I)若圓M與y軸相交于A、B兩點(diǎn),且△ABM是邊長為2的正三角形,求橢圓的方程;
(Ⅱ)已知點(diǎn)F(1,0),設(shè)過點(diǎn)F的直線l交橢圓于C、D兩點(diǎn),若直線l繞點(diǎn)F任意轉(zhuǎn)動(dòng)時(shí),恒有|OC|2+|OD|2<|CD|2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案