【題目】如圖,在四棱錐中,底面是矩形,側棱底面,且為棱的中點,作于點.

1)證明:平面;

2)若面與面所成二面角的大小為,求與面所成角的正弦值.

【答案】(1)證明見詳解;(2).

【解析】

1)先證,結合已知條件,即可求證;

2)建立空間直角坐標系,由二面角大小求得長度,再用線面角的定義即可求解.

1)因為平面平面,故;

又因為四邊形為矩形,故可得

平面,且,

故可得平面;

又因為平面,故可得

又因為,中點,故,

結合平面

故可得平面,

又因為平面,則.

由題可知,又平面,,

即證平面.

2)因為平面,且底面為矩形,

故可得兩兩垂直.

則以為坐標原點,分別為軸建立空間直角坐標系,

如下圖所示:

不妨設,故可得

,

由(1)中所得可知為平面的法向量,

容易知是平面的一個法向量.

又因為面與面所成二面角的大小為,

故可得,解得.

又因為平面,故可得即為所求.

中,.

與面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】男運動員6名,女運動員4名,其中男女隊長各1.選派5人外出比賽,在下列情形中各有多少種選派方法?

1)男運動員3名,女運動員2名;

2)至少有1名女運動員;

3)隊長中至少有1人參加;

4)既要有隊長,又要有女運動員.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若直角坐標平面內的兩點滿足條件:都在函數(shù)的圖象上;②關于原點對稱.則稱點對是函數(shù)的一對友好點對”(點對看作同一對友好點對”).已知函數(shù)(),若此函數(shù)的友好點對有且只有一對,則的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經典的熱潮.某社團為調查大學生對于“中華詩詞”的喜好,從甲、乙兩所大學各隨機抽取了40名學生,記錄他們每天學習“中華詩詞”的時間,并整理得到如下頻率分布直方圖:

根據學生每天學習“中華詩詞”的時間,可以將學生對于“中華詩詞”的喜好程度分為三個等級 :

(Ⅰ)從甲大學中隨機選出一名學生,試估計其“愛好”中華詩詞的概率;

()從兩組“癡迷”的同學中隨機選出2人,記為選出的兩人中甲大學的人數(shù),求的分布列和數(shù)學期望

()試判斷選出的這兩組學生每天學習“中華詩詞”時間的平均值的大小,及方差的大。(只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在五面體中,底面為矩形,,過的平面交棱,交棱

(1)證明:平面;

(2)若,求平面與平面所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第n次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中n是指改良工藝的次數(shù).

1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

2)依據國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標.

(參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導數(shù).

1)討論的單調性;

2)若上恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,點,角的內角平分線所在直線的方程為邊上的高所在直線的方程為.

1)求點的坐標;

2)求的內切圓圓心.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左頂點為,右焦點為,點在橢圓上.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,直線分別與軸交于點,在軸上,是否存在點,使得無論非零實數(shù)怎樣變化,總有為直角?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案