已知向量i=(1,0),j=(0,1),與2i+j垂直的向量是
A.2i-j
B.i-2j
C.2i-j
D.i+2j
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)2-1蘇教版 蘇教版 題型:044
已知常數(shù)a>0,向量c=(0,a),i=(1,0),經(jīng)過原點(diǎn)O以c+λi為方向向量的直線與經(jīng)過定點(diǎn)A(0,a),以i-2λc為方向向量的直線相交于點(diǎn)P,其中λ∈R.試問:是否存在兩個(gè)定點(diǎn)E、F,使得||+||為定值?若存在,求出E、F的坐標(biāo);請(qǐng)若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:“伴你學(xué)”新課程 數(shù)學(xué)·必修3、4(人教B版) 人教B版 題型:044
已知常數(shù)a>0,向量c=(0,a),i=(1,0).直線l經(jīng)過原點(diǎn)O且與向量c+λi的基線平行,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知向量i=(1,0),j=(0,1),對(duì)坐標(biāo)平面內(nèi)的任一向量a,給出下列四個(gè)結(jié)論:
①存在唯一的一對(duì)實(shí)數(shù)x、y,使得a=(x,y);
②若x1,y1,x2,y2∈R,a=(x1,y1)≠(x2,y2),則x1≠x2,且y1≠y2;
③若x,y∈R,a≠0,且a=(x,y),則a的起點(diǎn)是原點(diǎn)O;
④若x,y∈R,a≠0,且a的終點(diǎn)的坐標(biāo)是(x,y),則a=(x,y).
在以上四個(gè)結(jié)論中,正確的結(jié)論共有
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com