【題目】關(guān)于下列命題,正確的個(gè)數(shù)是( )
①若點(diǎn)(2,1)在圓x2+y2+kx+2y+k2﹣15=0外,則k>2或k<﹣4
②已知圓M:(x+cosθ)2+(y﹣sinθ)2=1,直線y=kx,則直線與圓恒相切
③已知點(diǎn)P是直線2x+y+4=0上一動(dòng)點(diǎn),PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點(diǎn),則四邊形PACB的最小面積是為2
④設(shè)直線系M:xcosθ+ysinθ=2+2cosθ,M中的直線所能?chē)傻恼切蚊娣e都等于12 .
A.1
B.2
C.3
D.4
【答案】C
【解析】解:對(duì)于②:∵點(diǎn)(2,1)在圓外,∴k2+2k﹣8>0,解得k<﹣4,或k>2,故①正確;
對(duì)于②:圓心M到直線的距離d= =|sin(θ+φ)|,其中sinφ= ,cosφ= ,
∵|sin(θ+φ)|≤1,∴直線與圓相交或相切.故②錯(cuò)誤;
對(duì)于③:圓C:x2+y2﹣2y=0,即x2+(y﹣1)2=1,故圓心C(0,1),半徑r=1,
圓心C到直線2x+y+4=0的距離d= ,即PCmin= ,
∵ ,∴PAmin=2,
∵ ,∴(S四邊形PACB)min=2,故③正確;
對(duì)于④:直線系M:xcosθ+ysinθ=2+2cosθ,即(x﹣2)cosθ+ysinθ=2
∵點(diǎn)(2,0)到直線的距離d= ,
∴直線系M都是圓C:(x﹣2)2+y2=4的切線.
設(shè)△ABC是M中的直線所能?chē)傻囊粋(gè)正三角形,則AC=2r=4,AB=2AD=2
∴S= ,故④正確.
綜上可知,正確的是①,③,④,共有3個(gè).
故選:C
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)在生物研究性學(xué)習(xí)中,對(duì)春季晝夜溫差大小與黃豆種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,于是他在4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)/顆 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,求這2天發(fā)芽的種子數(shù)均不小于25的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另三天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在長(zhǎng)方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點(diǎn),AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知, 分別是中點(diǎn),弧的半徑分別為,點(diǎn)平分弧,過(guò)點(diǎn)作弧的切線分別交于點(diǎn).四邊形為矩形,其中點(diǎn)在線段上,點(diǎn)在弧上,延長(zhǎng)與交于點(diǎn).設(shè),矩形的面積為.
(1)求的解析式并求其定義域;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2x|x﹣a|,其中a∈R.
(1)當(dāng)a=﹣1時(shí),在所給坐標(biāo)系中作出f(x)的圖象;
(2)對(duì)任意x∈[1,2],函數(shù)g(x)=﹣x+14的圖象恒在函數(shù)f(x)圖象的上方,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知以T=4為周期的函數(shù)f(x)= ,其中m>0.若方程3f(x)=x恰有5個(gè)實(shí)數(shù)解,則m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義在[﹣2,2]上的函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,且f(1﹣m)<f(3m).
(1)若函數(shù)f(x)在區(qū)間[﹣2,2]上是奇函數(shù),求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[﹣2,2]上是偶函數(shù),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線C1: =1,(a>0,b>0)的焦距是實(shí)軸長(zhǎng)的2倍,若拋物線C2:x2=2py,(p>0)的焦點(diǎn)到雙曲線C1的漸近線的距離為2,求拋物線C2的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com