【題目】已知在長方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點,AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.
【答案】解:(Ⅰ)如圖,建立空間直角坐標(biāo)系,設(shè)AD=1,則AB=2.∵DC⊥平面ADD1A1 , ∴ =(0,2,0),就是平面ADD1A1的一個法向量.
,∴ ,∴ =0,
∴ ,∴ .
(Ⅱ)設(shè)平面DMN的一個法向量為 .
∴ ,∴ .
取 = .
∴sinθ= = .
所以直線DA與平面ADD1A1 , 所成角的正弦位值是 .
【解析】(1)如圖,建立空間直角坐標(biāo)系,設(shè)AD=1,則AB=2.由DC⊥平面ADD1A1 , 可得 是平面ADD1A1的一個法向量.證明 =0,即可證明 .(2)設(shè)平面DMN的一個法向量為 =(x,y,z).利用 ,可得 .利用sinθ= 即可得出.
【考點精析】關(guān)于本題考查的直線與平面平行的判定和空間角的異面直線所成的角,需要了解平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是等差數(shù)列,若 <﹣1,且它的前n項和Sn有最大值,那么當(dāng)Sn取的最小正值時,n=( )
A.11
B.17
C.19
D.21
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2+bx+4
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)有零點,求b的取值范圍;
(3)求f(x)在區(qū)間[﹣1,1]上的最大值g(b).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD所在的平面和平面互相垂直,等腰梯形中, , , , , 分別為的中點, 為底面的重心.
(Ⅰ)求證: ∥平面;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A=B=R,x∈A,y∈B,f:x→y=ax+b是從A到B的映射,若1和8的原象分別是3和10,則5在f下的象是( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若的圖象與軸交于兩點,起,求的取值范圍;
(3)令, ,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題,正確的個數(shù)是( )
①若點(2,1)在圓x2+y2+kx+2y+k2﹣15=0外,則k>2或k<﹣4
②已知圓M:(x+cosθ)2+(y﹣sinθ)2=1,直線y=kx,則直線與圓恒相切
③已知點P是直線2x+y+4=0上一動點,PA、PB是圓C:x2+y2﹣2y=0的兩條切線,A、B是切點,則四邊形PACB的最小面積是為2
④設(shè)直線系M:xcosθ+ysinθ=2+2cosθ,M中的直線所能圍成的正三角形面積都等于12 .
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合U={x|x是小于6的正整數(shù)},A={1,2},B∩(C∪A)={4},則∪(A∪B)=( )
A.{3,5}
B.{3,4}
C.{2,3}
D.{2,4}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com