如圖,F(xiàn)1,F(xiàn)2是離心率為的橢圓
C:(a>b>0)的左、右焦點(diǎn),直線:x=-將線段F1F2分成兩段,其長(zhǎng)度之比為1 : 3.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M在直線l上,線段AB的中垂線與C交于P,Q兩點(diǎn).

(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點(diǎn)M,使以PQ為直徑的圓經(jīng)過(guò)點(diǎn)F2,若存在,求出M點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(1)  (2)

試題分析:解:(Ⅰ) 設(shè)F2(c,0),則,所以c=1.因?yàn)殡x心率e=,所以a=
所以橢圓C的方程為.   4分
(Ⅱ) 當(dāng)直線AB垂直于x軸時(shí),直線AB方程為x=-, 6分
此時(shí)P(,0)、Q(,0) ,.不合;
當(dāng)直線AB不垂直于x軸時(shí),設(shè)存在點(diǎn)M(-,m) (m≠0),直線AB的斜率為k, ,
.由  得,則 -1+4mk=0,
故k=.此時(shí),直線PQ斜率為,PQ的直線方程為
即 
聯(lián)立消去y,整理得  
所以,. 8分
由題意0,于是
(x1-1)(x2-1)+y1y2
                      =0.
因?yàn)镸在橢圓內(nèi),符合條件; 12分
綜上,存在兩點(diǎn)M符合條件,坐標(biāo)為. 13分
點(diǎn)評(píng):解決的關(guān)鍵是對(duì)于直線與圓錐曲線的位置關(guān)系的運(yùn)用,要借助于代數(shù)方法聯(lián)立方程組來(lái)的得到,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線與橢圓有相同的焦點(diǎn),點(diǎn)、分別是橢圓的右、右頂點(diǎn),若橢圓經(jīng)過(guò)點(diǎn)
(1)求橢圓的方程;
(2)已知是橢圓的右焦點(diǎn),以為直徑的圓記為,過(guò)點(diǎn)引圓的切線,求此切線的方程;
(3)設(shè)為直線上的點(diǎn),是圓上的任意一點(diǎn),是否存在定點(diǎn),使得?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線的中心為原點(diǎn),的焦點(diǎn),過(guò)的直線相交于兩點(diǎn),且的中點(diǎn)為,則的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若。
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,軸截面為邊長(zhǎng)為等邊三角形的圓錐,過(guò)底面圓周上任一點(diǎn)作一平面,且與底面所成二面角為,已知與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(  )
A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與曲線的離心率互為倒數(shù),則(  )
A.16B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在拋物線上,橫坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離為,則的值為(   )
A.0.5B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓O,直線l與橢圓C相交于P、Q兩點(diǎn),O為原點(diǎn).
(Ⅰ)若直線l過(guò)橢圓C的左焦點(diǎn),且與圓O交于AB兩點(diǎn),且,求直線l的方程;
(Ⅱ)如圖,若重心恰好在圓上,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案