【題目】在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)點,直線與曲線的交點為、,求的值.
【答案】(1);;(2)4
【解析】
(1)直接消去參數(shù),將直線的參數(shù)方程化為普通方程,利用互化公式將曲線的極坐標方程轉(zhuǎn)化為直角坐標方程;
(2)將直線的參數(shù)方程代入曲線的普通方程,得到,得出,,化簡,代入韋達定理,即可求出結(jié)果.
解:(1)的參數(shù)方程消去參數(shù),易得的普通方程為,
曲線:,
即,
∴,
所以曲線的直角坐標方程為:.
(2)的參數(shù)方程(為參數(shù)),
設(shè)對應(yīng)參數(shù)為,對應(yīng)參數(shù)為,
將的參數(shù)方程與聯(lián)立得:,
得:,,
所以
即.
科目:高中數(shù)學 來源: 題型:
【題目】每年10月中上旬是小麥的最佳種植時間,但小麥的發(fā)芽會受到土壤、氣候等多方面因素的影響.某科技小組為了解晝夜溫差的大小與小麥發(fā)芽的多少之間的關(guān)系,在不同的溫差下統(tǒng)計了100顆小麥種子的發(fā)芽數(shù),得到了如下數(shù)據(jù):
溫差 | 8 | 10 | 11 | 12 | 13 |
發(fā)芽數(shù)(顆) | 79 | 81 | 85 | 86 | 90 |
(1)請根據(jù)統(tǒng)計的最后三組數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由(1)中的線性回歸方程得到的估計值與前兩組數(shù)據(jù)的實際值誤差均不超過兩顆,則認為線性回歸方程是可靠的,試判斷(1)中得到的線性回歸方程是否可靠;
(3)若100顆小麥種子的發(fā)芽率為顆,則記為的發(fā)芽率,當發(fā)芽率為時,平均每畝地的收益為元,某農(nóng)場有土地10萬畝,小麥種植期間晝夜溫差大約為,根據(jù)(1)中得到的線性回歸方程估計該農(nóng)場種植小麥所獲得的收益.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐中,平面,底面為菱形,且有,,是線段上一點,且與所成角的正弦值是.
(1)求的大小;
(2)若與平面所成的角的正弦值是,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓經(jīng)過定點,且與定直線相切.
(1)求動圓圓心的軌跡方程;
(2)已知點,過點作直線與交于,兩點,過點作軸的垂線分別與直線,交于點,(為原點),求證:為線段中點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為擔任班主任的教師辦理手機語音月卡套餐,為了解通話時長,采用隨機抽樣的方法,得到該校100位班主任每人的月平均通話時長(單位:分鐘)的數(shù)據(jù),其頻率分布直方圖如圖所示,將頻率視為概率.
(1)求圖中的值;
(2)估計該校擔任班主任的教師月平均通話時長的中位數(shù);
(3)在,這兩組中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求抽取的2人恰在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的中心在原點,其左焦點與拋物線的焦點重合,過的直線與橢圓交于、兩點,與拋物線交于、兩點.當直線與軸垂直時,.
(1)求橢圓的方程;
(2)求的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在上至少存在兩個不同的,滿足,且在上具有單調(diào)性,點和直線分別為圖象的一個對稱中心和一條對稱軸,則下列命題中正確的是( )
A.的最小正周期為
B.
C.在上是減函數(shù)
D.將圖象上每一點的橫坐標伸長為原來的2倍(縱坐標不變),得到的圖象,則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com