【題目】一對(duì)夫婦為了給他們的獨(dú)生孩子支付將來(lái)上大學(xué)的費(fèi)用,從孩子一周歲生日開(kāi)始,每年到銀行儲(chǔ)蓄元一年定期,若年利率為保持不變,且每年到期時(shí)存款(含利息)自動(dòng)轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時(shí)不再存入,將所有存款(含利息)全部取回,則取回的錢(qián)的總數(shù)為
A.B.
C.D.
【答案】D
【解析】
由題意可得:孩子18歲生日時(shí)將所有存款(含利息)全部取回,可以看成是以為首項(xiàng),為公比的等比數(shù)列的前17項(xiàng)的和,再由等比數(shù)列前項(xiàng)和公式求解即可.
解:根據(jù)題意,
當(dāng)孩子18歲生日時(shí),孩子在一周歲生日時(shí)存入的元產(chǎn)生的本利合計(jì)為,
同理:孩子在2周歲生日時(shí)存入的元產(chǎn)生的本利合計(jì)為,
孩子在3周歲生日時(shí)存入的元產(chǎn)生的本利合計(jì)為,
孩子在17周歲生日時(shí)存入的元產(chǎn)生的本利合計(jì)為,
可以看成是以為首項(xiàng),為公比的等比數(shù)列的前17項(xiàng)的和,
此時(shí)將存款(含利息)全部取回,
則取回的錢(qián)的總數(shù):
;
故選:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l: 橢圓C: ,分別為橢圓的左右焦點(diǎn).
(1)當(dāng)直線(xiàn)l過(guò)右焦點(diǎn)時(shí),求C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線(xiàn)l與橢圓C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠AOB是鈍角,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線(xiàn)與橢圓交于,兩點(diǎn)(點(diǎn),均在第一象限),為坐標(biāo)原點(diǎn).
①證明:直線(xiàn)的斜率依次成等比數(shù)列.
②若與關(guān)于軸對(duì)稱(chēng),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三梭柱ABC-A1B1C1中,AC=BC,E,F分別為AB,A1B1的中點(diǎn).
(1)求證:AF∥平面B1CE;
(2)若A1B1⊥,求證:平面B1CE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值.經(jīng)數(shù)據(jù)處理后得到該樣本的頻率分布直方圖,其中質(zhì)量指標(biāo)值不大于1.50的莖葉圖如圖所示,以這100件產(chǎn)品的質(zhì)量指標(biāo)值在各區(qū)間內(nèi)的頻率代替相應(yīng)區(qū)間的概率.
(1)求圖中,,的值;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(說(shuō)明:①同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表;②方差的計(jì)算只需列式正確);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于1.50的產(chǎn)品至少要占全部產(chǎn)品的”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在10件產(chǎn)品中,有3件一等品,4件二等品,3件三等品。從這10件產(chǎn)品中任取3件,求:
(I) 取出的3件產(chǎn)品中一等品件數(shù)X的分布列和數(shù)學(xué)期望;
(II) 取出的3件產(chǎn)品中一等品件數(shù)多于二等品件數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,設(shè)函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)是否存在整數(shù),對(duì)于任意,關(guān)于的方程在區(qū)間上有唯一實(shí)數(shù)解?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀(guān)影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線(xiàn)分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說(shuō)法:
①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;
②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;
③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;
④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.
其中,正確的說(shuō)法是____________.(填寫(xiě)所有正確說(shuō)法的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改編自中國(guó)神話(huà)故事的動(dòng)畫(huà)電影《哪吒之魔童降世》自7月26日首映,在不到一個(gè)月的時(shí)間,票房收入就超過(guò)了38億元,創(chuàng)造了中國(guó)動(dòng)畫(huà)電影的神話(huà).小明和同學(xué)相約去電影院觀(guān)看《哪吒之魔童降世》,影院的三個(gè)放映廳分別在7:30,8:00,8:30開(kāi)始放映,小明和同學(xué)大約在7:40至8:30之間到達(dá)影院,且他們到達(dá)影院的時(shí)間是隨機(jī)的,那么他們到達(dá)后等待的時(shí)間不超過(guò)10分鐘的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com