已知函數(shù)f(x)=ax2-(2a+1)x+2ln x,a∈R.
(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)求f(x)的單調區(qū)間.
科目:高中數(shù)學 來源: 題型:解答題
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調遞增區(qū)間;
(2)若函數(shù)F(x)=f(x)-x2+3x+a在上只有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知a>0,函數(shù)f(x)=ax2-ln x.
(1)求f(x)的單調區(qū)間;
(2)當a=時,證明:方程f(x)=f 在區(qū)間(2,+∞)上有唯一解.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù).
(1)求函數(shù)的單調遞增區(qū)間;
(2)若關于的方程在區(qū)間內恰有兩個相異的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ax+x2,g(x)=xln a,a>1.
(1)求證:函數(shù)F(x)=f(x)-g(x)在(0,+∞)上單調遞增;
(2)若函數(shù)y=-3有四個零點,求b的取值范圍;
(3)若對于任意的x1,x2∈[-1,1]時,都有|F(x2)-F(x1)|≤e2-2恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)y=xlnx+1.
(1)求這個函數(shù)的導數(shù);
(2)求這個函數(shù)的圖象在點x=1處的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若曲線經過點,曲線在點處的切線與直線垂直,求的值;
(2)在(1)的條件下,試求函數(shù)(為實常數(shù),)的極大值與極小值之差;
(3)若在區(qū)間內存在兩個不同的極值點,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖像過坐標原點,且在點處的切線的斜率是.
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值;
(3)對任意給定的正實數(shù),曲線上是否存在兩點,使得是以為直角頂點的直角三角形,且此三角形斜邊的中點在軸上?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com