【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時,若在區(qū)間上的最小值為,求的取值范圍;
(Ⅲ)若對任意,有恒成立,求的取值范圍.
【答案】(1);(2);(3).
【解析】試題分析:(Ⅰ)把a=1代入函數(shù)解析式,求導(dǎo)后求出f′(1),同時求出f(1),由點(diǎn)斜式寫出切線方程;
(Ⅱ)求出函數(shù)的定義域,求出原函數(shù)的導(dǎo)函數(shù),進(jìn)一步求出導(dǎo)函數(shù)的零點(diǎn),分和三種情況討論三種情況討論原函數(shù)的單調(diào)性,由f(x)在區(qū)間[1,e]上的最小值為-2求解的取值范圍;
(Ⅲ)構(gòu)造輔助函數(shù)g(x)=f(x)+2x,問題轉(zhuǎn)化為函數(shù)g(x)在(0,+∞)上單調(diào)遞增,求解的范圍.把函數(shù)g(x)求導(dǎo)后分 =0和≠0討論, ≠0時借助于二次函數(shù)過定點(diǎn)及對稱軸列式求解.
試題解析:
(1)由,則
,所以切線方程為
(2)
令
當(dāng)時, 在上單調(diào)遞增,
當(dāng)時, 在上單調(diào)遞減, (舍)
當(dāng)時, 在上單調(diào)遞減, 在上單調(diào)遞增, (舍)
綜上,
(3)令
令,只要在上單調(diào)遞增即可.
在上恒成立.
在上恒成立.
當(dāng)時, 恒成立;
當(dāng)時,原不等式
當(dāng)時,原不等式,左邊無最大值,不合題意(舍)
綜上, .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是自然對數(shù)的底數(shù)),
(1)求曲線在點(diǎn)處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中為的導(dǎo)函數(shù),證明:對任意,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)镈,如果x∈D,y∈D,使得f(x)=﹣f(y)成立,則稱函數(shù)f(x)為“Ω函數(shù)”.給出下列四個函數(shù):
①y=sinx;
②y=2x;
③y= ;
④f(x)=lnx,
則其中“Ω函數(shù)”共有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asinωx(A>0,ω>0)的部分圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2015)的值為( )
A.0
B.3
C.6
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+2x+c>0的解集為 ,其中a,c∈R,則關(guān)于x的不等式﹣cx2+2x﹣a>0的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)從0,1,2,3,4,5這六個數(shù)字任取3個,問能組成多少個沒有重復(fù)數(shù)字的三位數(shù)?
(2)若(x6+3)(x2+ )5的展開式中含x10項(xiàng)的系數(shù)為43,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況,市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到下表:(單位:人)
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機(jī)選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若不等式2xlnx≥﹣x2+ax﹣3對x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0,+∞)
C.(﹣∞,4]
D.[4,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com