【題目】解答題
(1)從0,1,2,3,4,5這六個(gè)數(shù)字任取3個(gè),問能組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?
(2)若(x6+3)(x2+ 5的展開式中含x10項(xiàng)的系數(shù)為43,求實(shí)數(shù)a的值.

【答案】
(1)解:從0,1,2,3,4,5這六個(gè)數(shù)字任取3個(gè),

能組成沒有重復(fù)數(shù)字的三位數(shù)的個(gè)數(shù)是

=5×5×4=100


(2)解:(x6+3)(x2+ 5=x6 +3

且二項(xiàng)式 展開式的通項(xiàng)公式為

Tr+1= x25r = x103rar;

令10﹣3r=10,解得r=0,

∴其展開式中x10的系數(shù)為 a0=1;

令10﹣3r=4,解得r=2,

∴其展開式中x4的系數(shù)為 a2=10a2;

故所求展開式中含x10項(xiàng)的系數(shù)為

10a2+3×1=43,

解得a=±2


【解析】(1)可用分步原理求解,第一步排首位,從非零數(shù)字中選一個(gè),有 種不同方法;第二步排后兩位,從余下的5個(gè)數(shù)字中選2個(gè)排列即可;(2)化(x6+3)(x2+ 5=x6 +3 , 利用 展開式的通項(xiàng)公式求出x10的系數(shù)和x4的系數(shù),
即可得出所求展開式中含x10項(xiàng)的系數(shù),列方程求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷函數(shù)f(x)的奇偶性,并證明;
(2)利用函數(shù)單調(diào)性的定義證明:f(x)是其定義域上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】衡陽市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者,現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名后按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)的宣傳活動(dòng),則應(yīng)從第3,45組各抽取多少名志愿者?

2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),若在區(qū)間上的最小值為,求的取值范圍;

(Ⅲ)若對(duì)任意,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a,b是常數(shù),a>0且a≠1)在區(qū)間 上有最大值3,最小值為 .試求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的長(zhǎng)度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)當(dāng)時(shí),求曲線上的點(diǎn)到直線的距離的最大值;

(2)若曲線上的所有點(diǎn)都在直線的下方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1 , S3 , 3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an , cn= ,記數(shù)列{cn}的前n項(xiàng)和為Tn . 若對(duì)于任意的n∈N* , Tn≤λ(n+4)恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y= x3+bx2+(b+2)x+3是R上的單調(diào)增函數(shù),則b的取值是(
A.b<﹣1或b>2
B.b≤﹣2或b≥2
C.﹣1<b<2
D.﹣1≤b≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知ccosB=(2a﹣b)cosC.
(1)求角C的大。
(2)若c=2,△ABC的周長(zhǎng)為2 +2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案