觀察下面一組組合數(shù)等式:

;
;
…………
(1)由以上規(guī)律,請寫出第個(gè)等式并證明;
(2)隨機(jī)變量,求證:.

(1) ;(2)詳見解析.

解析試題分析:(1)觀察等式規(guī)律,易得,有組合數(shù)計(jì)算公式易證出.(2)隨機(jī)變量,求證:,顯然這是一個(gè)二項(xiàng)分布,根據(jù)二項(xiàng)分布得,利用(1)的結(jié)論,及二項(xiàng)式定理,即可證明.
試題解析:(1),證略.
(2)由二項(xiàng)分布得:

.
考點(diǎn):歸納推理,二項(xiàng)分布與數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負(fù)方得0分.設(shè)在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率;
(2)表示開始第4次發(fā)球時(shí)乙的得分,求的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

第16屆亞運(yùn)會于2010年11月12日在廣州舉辦,運(yùn)動(dòng)會期間來自廣州大學(xué)和中山大學(xué)的共計(jì)6名大學(xué)生志愿者將被隨機(jī)平均分配到跳水、籃球、體操這三個(gè)比賽場館服務(wù),且跳水場館至少有一名廣州大學(xué)志愿者的概率是.
(1)求6名志愿者中來自廣州大學(xué)、中山大學(xué)的各有幾人?
(2)設(shè)隨機(jī)變量X為在體操比賽場館服務(wù)的廣州大學(xué)志愿者的人數(shù),求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

A、B兩個(gè)投資項(xiàng)目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場分析,X1和X2的分布列分別為

X1
5%
10%
P
0.8
0.2
 
X2
2%
8%
12%
P
0.2
0.5
0.3
(1)在A,B兩個(gè)項(xiàng)目上各投資100萬元,Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤,求方差V(Y1)、V(Y2);
(2)將x(0≤x≤100)萬元投資A項(xiàng)目,100-x萬元投資B項(xiàng)目,f(x)表示投資A項(xiàng)目所得利潤的方差與投資B項(xiàng)目所得利潤的方差的和.求f(x)的最小值,并指出x為何值時(shí),f(x)取到最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)甲、乙、丙三人每次射擊命中目標(biāo)的概率分別為0.7、0.6和0.5.三人各向目標(biāo)射擊一次,求至少有一人命中目標(biāo)的概率及恰有兩人命中目標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校組織一次冬令營活動(dòng),有8名同學(xué)參加,其中有5名男同學(xué),3名女同學(xué),為了活動(dòng)的需要,要從這8名同學(xué)中隨機(jī)抽取3名同學(xué)去執(zhí)行一項(xiàng)特殊任務(wù),記其中有X名男同學(xué).
(1)求X的分布列;
(2)求去執(zhí)行任務(wù)的同學(xué)中有男有女的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)連續(xù)擲兩次骰子得到的點(diǎn)數(shù)分別為m、n,令平面向量a=(m,n),b=(1,-3).
(1) 求使得事件“ab”發(fā)生的概率;
(2) 求使得事件“|a|≤|b|”發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙、丙三個(gè)車床加工的零件分別為350個(gè),700個(gè),1050個(gè),現(xiàn)用分層抽樣的方法隨機(jī)抽取6個(gè)零件進(jìn)行檢驗(yàn).
(1)從抽取的6個(gè)零件中任意取出2個(gè),已知這兩個(gè)零件都不是甲車床加工的,求其中至少有一個(gè)是乙車床加工的零件;
(2)從抽取的6個(gè)零件中任意取出3個(gè),記其中是乙車床加工的件數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了倡導(dǎo)健康、低碳、綠色的生活理念,某市建立了公共自行車服務(wù)系統(tǒng)鼓勵(lì)市民租用公共自行車出行,公共自行車按每車每次的租用時(shí)間進(jìn)行收費(fèi),具體收費(fèi)標(biāo)準(zhǔn)如下:
①租用時(shí)間不超過1小時(shí),免費(fèi);
②租用時(shí)間為1小時(shí)以上且不超過2小時(shí),收費(fèi)1元;
③租用時(shí)間為2小時(shí)以上且不超過3小時(shí),收費(fèi)2元;
④租用時(shí)間超過3小時(shí)的時(shí)段,按每小時(shí)2元收費(fèi)(不足1小時(shí)的部分按1小時(shí)計(jì)算)
已知甲、乙兩人獨(dú)立出行,各租用公共自行車一次,兩人租車時(shí)間都不會超過3小時(shí),設(shè)甲、乙租用時(shí)間不超過1小時(shí)的概率分別是0.4和0.5;租用時(shí)間為1小時(shí)以上且不超過2小時(shí)的概率分別是0.5和0.3.
(1)求甲、乙兩人所付租車費(fèi)相同的概率;
(2)設(shè)甲、乙兩人所付租車費(fèi)之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望E.

查看答案和解析>>

同步練習(xí)冊答案