到定點(2,0)與到定直線x=8的距離之比為的動點的軌跡方程是  (    )                             
A B. C    D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知F是橢圓C的一個焦點,且橢圓C上的點到點F的最大距離為8
(1)求橢圓C的標準方程;
(2)已知圓O:,直線. 求當點在橢圓C上運動時,直線 被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.       已知定圓圓心為A;動圓M過點且與圓A相切,圓心M 的坐標為,它的軌跡記為C。
(1)求曲線C的方程;
(2)過一點N(1,0)作兩條互相垂直的直線與曲線C分別交于點P和Q,試問這兩條直線能否使得向量互相垂直?若存在,求出點P,Q的橫坐標,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

F1、F2分別是橢圓的左、右焦點,點P在橢圓上,線段PF2與軸的交點為
M,且,則點M到坐標原點O的距離是  
A.B.C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點,曲線C是坐標原點為頂點,以F2為焦點的拋物線,過點F1的直線曲線C于x軸上方兩個不同點P、Q,點P關于x軸的對稱點為M,設
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知的頂點在橢圓上,頂點是橢圓的一個焦點,且橢圓的另外一個焦點在邊上,則的周長是(    )
A.B.6C.D.12

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓及直線.
(1)當直線與橢圓有公共點時,求實數(shù)的取值范圍.
(2)求被橢圓截得的最長弦所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點為F1,F(xiàn)2,P為橢圓上一點,若,則(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓,過右焦點
斜率為的直線與兩點,若,則 (  )
A. 1B. C.D.2

查看答案和解析>>

同步練習冊答案