【題目】已知四棱錐的底面是等腰梯形,,,,,.

(Ⅰ)證明:平面平面;

(Ⅱ)點是棱上一點,且平面,求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】

(Ⅰ)首先通過計算得,再利用判定定理轉(zhuǎn)化為線面垂直,從而得到面面垂直;(Ⅱ)首先通過垂直關(guān)系的判定正確建立空間直角坐標(biāo)系找好的坐標(biāo),然后將線面平行即平面轉(zhuǎn)化為線線平行,從而確定平面的法向量,最后根據(jù)法向量求出二面角的余弦.

(Ⅰ)證明:等腰梯形中,

所以,又,所以,所以.

所以,所以,即

又因為,且于點

所以平面,又因為平面,因此平面平面.

(Ⅱ)連接,由(Ⅰ)知,平面,所以,所以,

所以,即,

如圖以所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,

,平面的法向量,

因為平面,平面,

平面平面,所以,

設(shè)平面的法向量為,則,即,

,令,則,

所以,所以所求二面角的余弦值是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有下列四個命題:

:若,則;

:若,則

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. ,C. D. ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)一位高三班主任對本班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計數(shù)據(jù)如表所示:

積極參加班級工作

不積極參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計

24

26

50

如果隨機(jī)調(diào)查這個班的一名學(xué)生,求事件A:抽到不積極參加班級工作且學(xué)習(xí)積極性不高的學(xué)生的概率;

若不積極參加班級工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項活動,請用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一長為100碼,寬為80碼,球門寬為8碼的矩形足球運動場地,如圖所示,其中是足球場地邊線所在的直線,球門處于所在直線的正中間位置,足球運動員(將其看做點)在運動場上觀察球門的角稱為視角.

(1)當(dāng)運動員帶球沿著邊線奔跑時,設(shè)到底線的距離為碼,試求當(dāng)為何值時最大;

(2)理論研究和實踐經(jīng)驗表明:張角越大,射門命中率就越大.現(xiàn)假定運動員在球場都是沿著垂直于底線的方向向底線運球,運動到視角最大的位置即為最佳射門點,以的中點為原點建立如圖所示的直角坐標(biāo)系,求在球場區(qū)域內(nèi)射門到球門的最佳射門點的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)與圓O相切的直線l交橢圓CA,B兩點(O為坐標(biāo)原點),求△AOB面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右兩個焦點分別為,離心率,短軸長為2.

(1)求橢圓的方程;

(2)點為橢圓上的一動點(非長軸端點),的延長線與橢圓交于點, 的延長線與橢圓交于點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓過點,且與圓外切于點,過點作圓的兩條切線,,切點為,

1)求圓的標(biāo)準(zhǔn)方程;

2)試問直線是否恒過定點?若過定點,請求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】制訂投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預(yù)測,甲、乙項目可能的最大盈利分別為,可能的最大虧損率分別為.投資人計劃投資金額不超過億元,要求確?赡艿馁Y金虧損不超過億元,問投資人對甲、乙兩個項目各投資多少億元,才能使可能的盈利最大?

查看答案和解析>>

同步練習(xí)冊答案