【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,且滿(mǎn)足,點(diǎn)的軌跡為

(Ⅰ)求的極坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。

【答案】(Ⅰ) :;:(Ⅱ)2

【解析】

(1)由曲線C1的參數(shù)方程能求出曲線C1的普通方程,由此能求出曲線C的極坐標(biāo)方程;設(shè)點(diǎn)B的極坐標(biāo)為(ρ,θ),點(diǎn)A的極坐標(biāo)為(ρ0,θ0),則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,從而ρρ0=8,由此能求出C2的極坐標(biāo)方程.

(2)由|OC|=2,SABCSOBCSOAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,由此能求出SABC的最小值.

(1)∵曲線C1的參數(shù)方程為(α為參數(shù)),

∴曲線C1的普通方程為x2+y2﹣2x=0,

∴曲線C的極坐標(biāo)方程為ρ=2cosθ,

設(shè)點(diǎn)B的極坐標(biāo)為(ρ,θ),點(diǎn)A的極坐標(biāo)為(ρ0,θ0),

則|OB|=ρ,|OA|=ρ0,ρ0=2cosθ0,θ=θ0,

∵|OA||OB|=8,∴ρρ0=8,

,ρcosθ=4,

C2的極坐標(biāo)方程為ρcosθ=4.

(2)由題設(shè)知|OC|=2,

SABCSOBCSOAC|OC||ρBcosθ﹣ρAcosθ|=|4﹣2cos2θ|,

當(dāng)θ=0時(shí),SABC取得最小值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系內(nèi)的動(dòng)點(diǎn)P到直線的距離與到點(diǎn)的距離比為

1)求動(dòng)點(diǎn)P所在曲線E的方程;

2)設(shè)點(diǎn)Q為曲線E軸正半軸的交點(diǎn),過(guò)坐標(biāo)原點(diǎn)O作直線,與曲線E相交于異于點(diǎn)的不同兩點(diǎn),點(diǎn)C滿(mǎn)足,直線分別與以C為圓心,為半徑的圓相交于點(diǎn)A和點(diǎn)B,求△QAC與△QBC的面積之比的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式對(duì)任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=,下列結(jié)論中錯(cuò)誤的是

A. , f()=0

B. 函數(shù)y=f(x)的圖像是中心對(duì)稱(chēng)圖形

C. f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,)單調(diào)遞減

D. fx)的極值點(diǎn),則()=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)F,過(guò)F的直線與拋物線交于A,B兩點(diǎn),則的最小值是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黃平縣且蘭高中全體師生努力下,有效進(jìn)行了一對(duì)一輔導(dǎo)戰(zhàn)略成績(jī)提高了一倍,下列是優(yōu)秀學(xué)生,中等學(xué)生差生進(jìn)行一對(duì)一前后所占比例

戰(zhàn)略前

戰(zhàn)略后

優(yōu)秀學(xué)生

中等學(xué)生

差生

優(yōu)秀學(xué)生

中等學(xué)生

差生

20%

50%

30%

25%

45%

30%

則下列結(jié)論正確的是(

A.實(shí)行一對(duì)一輔導(dǎo)戰(zhàn)略,差生成績(jī)并沒(méi)有提高.

B.實(shí)行一對(duì)一輔導(dǎo)戰(zhàn)略,中等生成績(jī)反而下降了.

C.實(shí)行一對(duì)一輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生成績(jī)提高了.

D.實(shí)行一對(duì)一輔導(dǎo)戰(zhàn)略,優(yōu)秀學(xué)生與中等生的成績(jī)沒(méi)有發(fā)生改變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)寫(xiě)出函數(shù)的圖象經(jīng)過(guò)的一個(gè)定點(diǎn)的坐標(biāo),并求圖象在點(diǎn)處的切線方程;

(2)若函數(shù)對(duì)任意的恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱柱中,,,

求證:面;

,在線段上是否存在一點(diǎn),使二面角的平面角的余弦值為?若存在,確定點(diǎn)的位置;若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給圖中A,B,C,DE,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案