【題目】已知拋物線的焦點為,準線為,過點的直線交拋物線于,兩點,過點作準線的垂線,垂足為,當點坐標為時,為正三角形,則此時的面積為____________

【答案】

【解析】

FAE的垂線,垂足為H,則HAE的中點,利用A點坐標為 (3,y0),可求p,可得拋物線的方程,求出直線AF的方程,與拋物線方程聯(lián)立求出A,B的坐標,即可求出△OAB的面積.

如圖所示,

FAE的垂線,垂足為H,則HAE的中點,

因為A點坐標為 (3,y0),

所以AE=3+,EH=p,

所以2p=3+,

所以p=2,

所以y2=4x,此時A(3,2),kAF=,

所以直線AF的方程為y=(x﹣1),

代入拋物線方程可得3(x﹣1)2=4x,解得x=3,

所以y=2或﹣,

所以△AOB的面積為,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱的所有棱長都相等,分別為的中點.現(xiàn)有下列四個結(jié)論:

;

平面; :異面直線所成角的余弦值為.

其中正確的結(jié)論是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+cx﹣1當x=﹣2時有極值,且在x=﹣1處的切線的斜率為﹣3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[﹣1,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC中,E,F(xiàn)分別為AB,AC邊的中點,N為BC邊上一點,且CN= BC,將△AEF沿EF折到△A′EF的位置,使平面A′EF⊥平面EF﹣CB,M為EF中點.

(1)求證:平面A′MN⊥平面A′BF;
(2)求二面角E﹣A′F﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當x>1時,f(x)+ <0恒成立,求實數(shù)k的取值范圍;
(3)證明:當n∈N* , 且n≥2時, + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點,圓.

(1)當直線與圓相切時,求直線的一般方程;

(2)若直線與圓相交,且弦長為,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為棱AB,BC的中點,點F在側(cè)棱B1B上,且B1E⊥C1F,A1C1⊥B1C1

(1)求證:DE∥平面A1C1F;

(2)求證:B1E⊥平面A1C1F

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題方程有兩個不等的實根;命題方程無實根,若“”為真,“”為假,則實數(shù)的取值范圍為___________.(寫成區(qū)間的形式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)拋物線的準線軸交于橢圓的右焦點的左焦點.橢圓的離心率為,拋物線與橢圓交于軸上方一點,連接并延長其交于點 上一動點,且在之間移動.

(1)當取最小值時,求的方程;

(2)若的邊長恰好是三個連續(xù)的自然數(shù),當面積取最大值時,求面積最大值以及此時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案