如圖,直線,拋物線,已知點(diǎn)在拋物線上,且拋物線上的點(diǎn)到直線的距離的最小值為.
(1)求直線及拋物線的方程;
(2)過點(diǎn)的任一直線(不經(jīng)過點(diǎn))與拋物線交于、兩點(diǎn),直線與直線相交于點(diǎn),記直線,,的斜率分別為,, .問:是否存在實(shí)數(shù),使得?若存在,試求出的值;若不存在,請說明理由.
(1)直線的方程為,拋物線的方程為.(2)存在且
解析試題分析:
(1)把點(diǎn)P的坐標(biāo)帶入拋物線方程即可求出拋物線方程,而直線l方程的求解有兩種方法,法1,可以考慮求出既與拋物線相切,又與直線l平行的直線,該直線與直線l的距離即為拋物線上的點(diǎn)到直線l的最短距離,進(jìn)而可以求的相應(yīng)的b值。法二,可以設(shè)拋物線上任意一點(diǎn)為,列出點(diǎn)到直線l的距離公式,再利用二次函數(shù)的最值即可得到相應(yīng)的b值。
(2)直線AB經(jīng)過點(diǎn)Q且不經(jīng)過P,所以直線AB斜率存在且利用點(diǎn)斜式設(shè)出直線方程,聯(lián)立直線與拋物線方程,得到關(guān)于A,B橫坐標(biāo)或者縱坐標(biāo)的韋達(dá)定理,進(jìn)而利用AB直線的斜率表示PA,PB直線的斜率,再聯(lián)立直線AB與直線l,用AB直線斜率表示PM直線的斜率,得到關(guān)于AB直線斜率的表達(dá)式,帶入即可求的的值.
試題解析:
(1)(法一)點(diǎn)在拋物線上, . 2分
設(shè)與直線平行且與拋物線相切的直線方程為,
由 得,
,
由,得,則直線方程為.
兩直線、間的距離即為拋物線上的點(diǎn)到直線的最短距離,
有,解得或(舍去).
直線的方程為,拋物線的方程為. 6分
(法二)點(diǎn)在拋物線上, ,拋物線的方程為. 2分
設(shè)為拋物線上的任意一點(diǎn),點(diǎn)到直線的距離為,根據(jù)圖象,有,,
,的最小值為,由,解得.
因此,直線的方程為,拋物線的方程為. 6分
(2)直線的斜率存在,設(shè)直線的方程為,即,
由 得,
設(shè)點(diǎn)、
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
以橢圓的一個(gè)頂點(diǎn)為直角頂點(diǎn)作此橢圓的內(nèi)接等腰直角三角形,試問:(1)這樣的等腰直角三角形是否存在?若存在,寫出一個(gè)等腰直角三角形兩腰所在的直線方程。若不存在,說明理由。(2)這樣的等腰直角三角形若存在,最多有幾個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓C:+=1的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為A1,A,上頂點(diǎn)為B,拋物線C1,C2分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1與C2相交于直線y=x上一點(diǎn)P.
(1)求橢圓C及拋物線C1,C2的方程.
(2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M,N,已知點(diǎn)Q(-,0),求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,),且長軸長與短軸長的比是∶1.
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,過點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PA,PB分別交橢圓C于另外兩點(diǎn)A,B,求證:直線AB的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,短軸長為2,離心率為.
(1)求橢圓C的方程;
(2)A,B為橢圓C上滿足△AOB的面積為的任意兩點(diǎn),E為線段AB的中點(diǎn),射線OE交橢圓C于點(diǎn)P.設(shè)=t,求實(shí)數(shù)t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為原點(diǎn),離心率,其一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,若拋物線與直線相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),設(shè)動(dòng)點(diǎn)的運(yùn)動(dòng)軌跡為.若點(diǎn)滿足:,其中是上的點(diǎn),直線與的斜率之積為,試說明:是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,拋物線C與直線l1:y=-x的一個(gè)交點(diǎn)的橫坐標(biāo)為8.
(1)求拋物線C的方程;
(2)不過原點(diǎn)的直線l2與l1垂直,且與拋物線交于不同的兩點(diǎn)A,B,若線段AB的中點(diǎn)為P,且|OP|=|PB|,求△FAB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長。與軸的交點(diǎn)為,過坐標(biāo)原點(diǎn)的直線與相交于點(diǎn),直線分別與相交于點(diǎn)。
(1)求、的方程;
(2)求證:。
(3)記的面積分別為,若,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com