已知橢圓的中心為原點,離心率,其一個焦點在拋物線的準(zhǔn)線上,若拋物線與直線相切.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點在橢圓上運動時,設(shè)動點的運動軌跡為.若點滿足:,其中上的點,直線的斜率之積為,試說明:是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,說明理由.

(1)
(2)存在兩個定點,且為橢圓的兩個焦點,使得為定值,其坐標(biāo)為

解析試題分析:(1)根據(jù)拋物線與直線相切,聯(lián)立方程組并化簡, 利用,求得的值,進(jìn)一步可得;
應(yīng)用離心率求,得解.
(2)設(shè),,,利用“代入法”求得的軌跡方程為:.
確定的坐標(biāo)關(guān)系,
導(dǎo)出,作出判斷.
試題解析:
(1)由
拋物線與直線相切,
                     2分
拋物線的方程為:,其準(zhǔn)線方程為:,
離心率,,
故橢圓的標(biāo)準(zhǔn)方程為                      5分
(2)設(shè),

當(dāng)點在橢圓上運動時,動點的運動軌跡

的軌跡方程為:                      7分


設(shè)分別為直線,的斜率,由題設(shè)條件知
因此                9分
因為點在橢圓上,
所以,


所以,從而可知:點是橢圓上的點,
存在兩個定點

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓過點P(1, ),其左、右焦點分別為F1,F2,離心率e=, M, N是直線x=4上的兩個動點,且·=0.

(1)求橢圓的方程;
(2)求MN的最小值;
(3)以MN為直徑的圓C是否過定點?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,右焦點到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為)的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直線,拋物線,已知點在拋物線上,且拋物線上的點到直線的距離的最小值為

(1)求直線及拋物線的方程;
(2)過點的任一直線(不經(jīng)過點)與拋物線交于、兩點,直線與直線相交于點,記直線,,的斜率分別為,.問:是否存在實數(shù),使得?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CEG兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設(shè)P為橢圓上一點,且滿足t (O為坐標(biāo)原點),當(dāng)||<時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線兩點(三點互不相同),且滿足).
(1)求拋物線的焦點坐標(biāo)和準(zhǔn)線方程;
(2)設(shè)直線上一點,滿足,證明線段的中點在軸上;
(3)當(dāng)=1時,若點的坐標(biāo)為,求為鈍角時點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的一個焦點與拋物線的焦點重合,且截拋物線的準(zhǔn)線所得弦長為,傾斜角為的直線過點.
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標(biāo)原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓=1上任一點P,由點Px軸作垂線PQ,垂足為Q,設(shè)點MPQ上,且=2,點M的軌跡為C.
(1)求曲線C的方程;
(2)過點D(0,-2)作直線l與曲線C交于A、B兩點,設(shè)N是過點且平行于x軸的直線上一動點,且滿足 (O為原點),且四邊形OANB為矩形,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案