【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有兩個極值點,證明:

【答案】1)見解析;(2)證明見解析.

【解析】

1)首先對函數(shù)求導(dǎo),根據(jù)韋達定理與判別式確定二次函數(shù)根的分布,然后根據(jù)函數(shù)值的正負確定函數(shù)的單調(diào)性;

2)首先求出,然后在對求出的表達式進行切線縮放即可證明不等式.

1)由題知函數(shù)的定義域為,

,有,

所以函數(shù)上單調(diào)遞增,

,有兩個根,,設(shè)

根據(jù)韋達定理有,,

時,

有兩個正根,

可知當,函數(shù)單調(diào)遞增,

,函數(shù)單調(diào)遞減,

,函數(shù)單調(diào)遞增,

時,

有兩個根,

可知當,函數(shù)單調(diào)遞減,

可知當,函數(shù)單調(diào)遞增;

2)由(1)知當時,函數(shù)有兩個極值點,設(shè)

根據(jù)(1)中單調(diào)性可知函數(shù)處取極大值,處取極小值,

所以

代入,

整理得,

,有,

,

因為

代入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)當時,求函數(shù)處的切線方程;

2)記函數(shù)的導(dǎo)函數(shù)是,若不等式對任意的實數(shù)恒成立,求實數(shù)的取值范圍;

3)設(shè)函數(shù),是函數(shù)的導(dǎo)函數(shù),若函數(shù)存在兩個極值點,,且,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上任意一點滿足,直線的方程為,且與曲線交于不同兩點,.

1)求曲線的方程;

2)設(shè)點,直線的斜率分別為,且,判斷直線是否過定點?若過定點,求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,該幾何體是由一個直三棱柱ABEDCF和一個四棱錐PABCD組合而成,其中EFEAEB2,AEEBPAPD,平面PAD∥平面EBCF

1)證明:平面PBC∥平面AEFD;

2)求直線AP與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1772年德國的天文學(xué)家波得發(fā)現(xiàn)了求太陽的行星距離的法則,記地球距離太陽的平均距離為10,可以算得當時已知的六大行星距離太陽的平均距離如下表:

星名

水星

金星

地球

火星

木星

土星

與太陽的距離

4

7

10

16

52

100

除水星外,其余各星與太陽的距離都滿足波得定則(某一數(shù)列規(guī)律),當時德國數(shù)學(xué)家高斯根據(jù)此定則推算,火星和木星之間距離太陽28還有一顆大行星,1801年,意大利天文學(xué)家皮亞齊經(jīng)過觀測,果然找到了火星和木星之間距離太陽28的谷神星以及它所在的小行星帶,請你根據(jù)這個定則,估算從水星開始由近到遠算,第10個行星與太陽的平均距離大約是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件,為激發(fā)大家的學(xué)習(xí)興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動,這款軟件的激活碼為下列數(shù)學(xué)問題的答案:已知數(shù)列11、2、1、24、8、12、48、16、……,其中第一項是,接下來的兩項是,再接下來的三項是,……,以此類推,求滿足如下條件的最小整數(shù)且該數(shù)列的前項和為2的整數(shù)冪,那么該軟件的激活碼是________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標原點,是拋物線的焦點,是拋物線上位于第一象限內(nèi)的任意一點,過,,三點的圓的圓心為.

1)是否存在過點,斜率為的直線,使得拋物線上存在兩點關(guān)于直線對稱?若存在,求出的范圍;若不存在,說明理由;

2)是否存在點,使得直線與拋物線相切于點?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面,,,點分別是的中點.

1)證明:平面;

2)設(shè),當為何值時,平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)若直線與曲線交于兩點,且,求直線的傾斜角.

查看答案和解析>>

同步練習(xí)冊答案