【題目】已知點(diǎn)、,若直線的圖像上存在點(diǎn),使得成立,則說直線是“型直線”.給出下列直線:

1

2;

3

4;

5(常數(shù)

其中代表“型直線”的序號是___________.(要求寫出所有型直線的序號)

【答案】3)(4)(5

【解析】

由橢圓的定義可知,點(diǎn)的軌跡是以為焦點(diǎn)的橢圓,求出橢圓的方程,與直線的方程聯(lián)立,若方程組有解,則這條直線就是“型直線”,依此逐一判斷即可.

由橢圓的定義可知,點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,其中,

.

所以橢圓的方程為.

對于(1),由方程組,得不成立,方程組無解.所以直線不是“型直線”.

對于(2),由方程組,得不成立,方程組無解.所以直線不是“型直線”.

對于(3),由方程組,得,由,方程組有解,所以直線是“型直線”.

對于(4),由方程組,得,由,方程組有解,所以直線是“型直線”.

對于(5),因?yàn)?/span>(常數(shù))過定點(diǎn),且點(diǎn)在橢圓的內(nèi)部,所以直線與橢圓有交點(diǎn),所以直線(常數(shù))是“型直線”.

故答案為:(3)(4)(5).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中是函數(shù)的導(dǎo)數(shù), 為自然對數(shù)的底數(shù), (,).

(Ⅰ)求的解析式及極值;

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個同學(xué)家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機(jī)選取5天,統(tǒng)計(jì)出氣溫與熱奶茶銷售杯數(shù),如表:

氣溫oC)

0

4

12

19

27

熱奶茶銷售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為15oC,預(yù)測這天熱奶茶的銷售杯數(shù);

(Ⅱ)從表中的5天中任取一天,若已知所選取該天的熱奶茶銷售杯數(shù)大于120,求所選取該天熱奶茶銷售杯數(shù)大于130的概率.

參考數(shù)據(jù):,.參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,,,現(xiàn)以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.

1)證明:平面平面;

2)若為棱上一點(diǎn),且平面分三棱錐所得的上下兩部分的體積比為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)為曲線上的動點(diǎn),過軸的垂線,垂足為,滿足。

(1)求曲線的方程;

(2)直線與曲線交于兩不同點(diǎn),( 非原點(diǎn)),過,兩點(diǎn)分別作曲線的切線,兩切線的交點(diǎn)為。設(shè)線段的中點(diǎn)為,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實(shí)的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機(jī)調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機(jī)抽取1名,該觀眾是地區(qū)當(dāng)中“非常滿意”的觀眾的概率為0.35.

非常滿意

滿意

合計(jì)

30

15

合計(jì)

(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進(jìn)行問卷調(diào)查,則應(yīng)抽取“非常滿意”的地區(qū)的人數(shù)各是多少.

0.050

0.010

0.001

3.841

6.635

10.828

(2)完成上述表格,并根據(jù)表格判斷是否有的把握認(rèn)為觀眾的滿意程度與所在地區(qū)有關(guān)系.

(3)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機(jī)抽取3人,設(shè)抽到的觀眾“非常滿意”的人數(shù)為,求的分布列和期望.

附:參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)專賣店對某市市民進(jìn)行手機(jī)認(rèn)可度的調(diào)查,在已購買手機(jī)的1000名市民中,隨機(jī)抽取100名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如下:

分組(歲)

頻數(shù)

5

35

10

合計(jì)

100

(1)求頻數(shù)分布表中的值,并補(bǔ)全頻率分布直方圖;

(2)在抽取的這100名市民中,從年齡在、內(nèi)的市民中用分層樣的方法抽取5人參加手機(jī)宣傳活動,現(xiàn)從這5人中隨機(jī)選取2人各贈送一部手機(jī),求這2人中恰有1人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)上購物已經(jīng)成為人們消費(fèi)的一種習(xí)慣.假設(shè)某淘寶店的一種裝飾品每月的銷售量 (單位:千件)與銷售價格 (單位:元/件)之間滿足如下的關(guān)系式:為常數(shù).已知銷售價格為元/件時,每月可售出千件.

(1)求實(shí)數(shù)的值;

(2)假設(shè)該淘寶店員工工資、辦公等所有的成本折合為每件2元(只考慮銷售出的裝飾品件數(shù)),試確定銷售價格的值,使該店每月銷售裝飾品所獲得的利潤最大.(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,四邊形是矩形,且平面平面.

(Ⅰ)求證:平面

(Ⅱ)當(dāng)二面角的平面角的余弦值為,求這個六面體的體積.

查看答案和解析>>

同步練習(xí)冊答案