【題目】設(shè)函數(shù),則下列結(jié)論正確的是__________.(寫出所有正確的編號)①的最小正周期為;②在區(qū)間上單調(diào)遞增;③取得最大值的的集合為 ④將的圖像向左平移個單位,得到一個奇函數(shù)的圖像
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有實根?如果有實根,請求出一個長度為的區(qū)間,使;如果沒有,請說明理由(注:區(qū)間的長度)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),為實常數(shù).
(1)求的值;
(2)證明:在區(qū)間內(nèi)單調(diào)遞增;
(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)件,需另投入成本,當(dāng)年產(chǎn)量不足80件時, (萬元),當(dāng)年產(chǎn)量不少于80件時(萬元),每件商品售價50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(件)的函數(shù)解析式;
(2)年產(chǎn)量為多少件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是一幾何體的平面展開圖,其中四邊形為正方形, , , , 為全等的等邊三角形, 分別為的中點.在此幾何體中,下列結(jié)論中錯誤的為( )
A. 直線與直線共面 B. 直線與直線是異面直線
C. 平面平面 D. 面與面的交線與平行
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的四邊形ABCD,已知 =(6,1), =(x,y), =(﹣2,﹣3)
(1)若 且﹣2≤x<1,求函數(shù)y=f(x)的值域;
(2)若 且 ,求x,y的值及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率
(1)已知關(guān)于x的二次函數(shù)f(x)=ax2﹣4bx+1.設(shè)集合P={1,2,3}和Q={﹣1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)在區(qū)間[1,5]和[2,4]上分別取一個數(shù),記為a,b,求方程 + =1表示焦點在x軸上且離心率小于 的橢圓的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間的一臺機床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為, ,…, ,測量其長度(單位: ),得到下表中數(shù)據(jù):
編號 | ||||||||
長度 | 1.49 | 1.46 | 1.51 | 1.51 | 1.53 | 1.51 | 1.47 | 1.51 |
其中長度在區(qū)間內(nèi)的零件為一等品.
(1)從上述8個零件中,隨機抽取一個,求這個零件為一等品的概率;
(2)從一等品零件中,隨機抽取2個.
①用零件的編號列出所有可能的抽取結(jié)果;
②求這2個零件長度相等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計劃利用“神十”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載若干件新產(chǎn)品A、B,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預(yù)計產(chǎn)生的收益來決定具體搭載安排,有關(guān)數(shù)據(jù)如表:
每件產(chǎn)品A | 每件產(chǎn)品B | ||
研制成本、搭載 | 20 | 30 | 計劃最大資金額 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計收益(萬元) | 80 | 60 |
分別用x,y表示搭載新產(chǎn)品A,B的件數(shù).總收益用Z表示
(Ⅰ)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別搭載新產(chǎn)品A、B各多少件,才能使總預(yù)計收益達到最大?并求出此最大收益.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com