【題目】已知函數(shù)是奇函數(shù),
(1)求實(shí)數(shù)m的值;
(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)a的值.
【答案】(1)m=-1;(2)見解析;(3)或
【解析】
(1)由奇函數(shù)滿足,即可求解m,再檢驗(yàn)是否為奇函數(shù)即可;
(2)利用定義法證明:設(shè)是定義在區(qū)間上的任意兩個(gè)數(shù),且,化簡(jiǎn)和0比較大小即可;
(3)由(2)可知函數(shù)為增函數(shù),所以當(dāng)時(shí)有最小值,代入解方程即可.
(1)由,得,經(jīng)檢驗(yàn)符合題意.本題也可用恒成立求解.
(2)函數(shù)是區(qū)間上的增函數(shù).
下面用定義法證明:設(shè)是定義在區(qū)間上的任意兩個(gè)數(shù),且,
則.
因?yàn)?/span>,得,.
顯然有,從而有.
因?yàn)楫?dāng)時(shí),有成立,所以是區(qū)間上的增函數(shù).
(3)由單調(diào)性知,當(dāng)時(shí)有最小值,則,即,
解得或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖甲,四邊形中,是的中點(diǎn), .將(圖甲)沿直線折起,使二面角為(如圖乙).
(1)求證:⊥平面
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下四個(gè)命題:
①已知命題p:x∈R,tanx=2;命題q:x∈R,x2﹣x+1≥0,則命題p∧q是真命題;
②過(guò)點(diǎn)(﹣1,2)且在x軸和y軸上的截距相等的直線方程是x+y﹣1=0;
③函數(shù)f(x)=2x+2x﹣3在定義域內(nèi)有且只有一個(gè)零點(diǎn);
④若直線xsin α+ycos α+l=0和直線 垂直,則角 .
其中正確命題的序號(hào)為 . (把你認(rèn)為正確的命題序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體可能是一個(gè)( )
A. 棱臺(tái) B. 棱錐 C. 棱柱 D. 圓臺(tái)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC內(nèi)接于圓O,D是 的中點(diǎn),∠BAC的平分線分別交BC和圓O于點(diǎn)E,F(xiàn).
(1)求證:BF是△ABE外接圓的切線;
(2)若AB=3,AC=2,求DB2﹣DA2的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知全集U={2,4,a2-a+1},A={a+4,4},UA={7},則a=________.
(2)當(dāng)a>0且a≠1時(shí),函數(shù)必過(guò)定點(diǎn)_______
(3)為了保證信息安全,傳輸必須使用加密方式,有一種方式其加密、解密原理如下:
明文密文密文明文
己知加密為y=ax-2(x為明文、y為密文),如果明文“3”通過(guò)加密后得到密文為“6”,再發(fā)送,接收方通過(guò)解密得到明文“3”,若接收方接到密文為“14”,則原發(fā)的明文是________.
(4)已知3a=5b=M,且,則M的值為______________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=4y的焦點(diǎn)F和點(diǎn)A(-1,8),點(diǎn)P為拋物線上一點(diǎn),則|PA|+|PF|的最小值為( )
A. 16 B. 6 C. 12 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 在x=1處取得極值.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)當(dāng)x∈[1,+∞)時(shí),f(x)≥ 恒成立,求實(shí)數(shù)m的取值范圍;
(3)當(dāng)n∈N* , n≥2時(shí),求證:nf(n)<2+ + +…+ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com