設(shè)奇函數(shù)
上是增函數(shù),且
,若函數(shù)
對(duì)所有的
都成立,則當(dāng)
時(shí)t的取值范圍是 ( )
試題分析:由題意得:函數(shù)
上的最大值為
,則要使不等式
成立,只需
,即
,當(dāng)
時(shí),
,則由
得:
;當(dāng)
時(shí),
成立;當(dāng)
時(shí),
,則由
得:
,綜上
。故選C。
點(diǎn)評(píng):不等式的問題,常需要結(jié)合函數(shù)的單調(diào)性來求解。像本題解不等式
,只要確定函數(shù)
的最大值,然后讓
大于或等于最大值即可。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某人2002年底花100萬元買了一套住房,其中首付30萬元,70萬元采用商業(yè)貸款.貸款的月利率為5‰,按復(fù)利計(jì)算,每月等額還貸一次,10年還清,并從貸款后的次月開始還貸.
(1)這個(gè)人每月應(yīng)還貸多少元?
(2)為了抑制高房價(jià),國家出臺(tái)“國五條”,要求賣房時(shí)按照差額的20%繳稅.如果這個(gè)人現(xiàn)在將住房150萬元賣出,并且差額稅由賣房人承擔(dān),問:賣房人將獲利約多少元?(參考數(shù)據(jù):(1+0.005)120≈1.8)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)求函數(shù)
的最大值;
(2)若函數(shù)
與
有相同極值點(diǎn),
①求實(shí)數(shù)
的值;
②若對(duì)于
(
為自然對(duì)數(shù)的底數(shù)),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
,且
(1)求
;
(2)判斷
的奇偶性;
(3)判斷
在
上的單調(diào)性,并證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.設(shè)關(guān)于x的不等式
的解集為
且方程
的兩實(shí)根為
.
(1)若
,求
的關(guān)系式;
(2)若
,求
的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(1)若
,求在
圖象與
軸交點(diǎn)處的切線方程;
(2)若
在(1,2)上為單調(diào)函數(shù),求
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
是定義在R上的奇函數(shù),且當(dāng)
時(shí),不等式
成立,若
,
,則
的大小關(guān)系是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若
,則有( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
對(duì)于函數(shù)
(1)探索函數(shù)
的單調(diào)性;
(2)是否存在實(shí)數(shù)
,使函數(shù)
為奇函數(shù)?
查看答案和解析>>