【題目】已知兩條直線,試分別確定、的值,使:

(1)

(2)軸上的截距為.

【答案】(1)m0時,顯然l1l2不平行.

m≠0時,由=

m·m8×20,得m±4,

8×(1)n·m≠0,得n≠±2,

m4,n≠2時,或m=-4,n≠2時,l1∥l2.------------6

(2)當且僅當m·28·m0,即m0時,l1⊥l2.

又-=-1∴n8.

m0,n8時,l1⊥l2,且l1y軸上的截距為-1.--------------12

【解析】

試題(1)本題考察的是兩直線平行的判定,若平行,只需,根據(jù)已知條件代入相應的數(shù)值即可求出的值.

2)本題考察的是兩直線垂直的判斷,若垂直,則,根據(jù)已知條件代入相應的數(shù)值即可求出的值.

試題解析:(1,,

解得,或

2)由題得,解得

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an} 和等比數(shù)列{bn}滿足a1b1=1,a2a4=10,b2b4a5.

(1)求{an}的通項公式;

(2)求和:b1b3b5+…+b2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中文函數(shù)function)一詞,最早由近代數(shù)學家李善蘭翻譯的之所以這么翻譯,他給出的原因是凡此變數(shù)中函彼變數(shù)者,則此為彼之函數(shù),也即函數(shù)指一個量隨著另一個量的變化而變化下列選項中兩個函數(shù)相等的是(   。

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線 ,直線與拋物線交于 兩點.

(1)若直線, 的斜率之積為,證明:直線過定點;

(2)若線段的中點在曲線 上,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某物流公司購買了一塊長AM=90米,寬AN=30米的矩形地塊AMPN,規(guī)劃建設占地如圖中矩形ABCD的倉庫,其余地方為道路和停車場,要求頂點C在地塊對角線MN上,B、D分別在邊AM、AN上,假設AB長度為x米.若規(guī)劃建設的倉庫是高度與AB的長相同的長方體建筑,問AB長為多少時倉庫的庫容最大?(墻體及樓板所占空間忽略不計)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗方式為:弧田面積=,弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”指半徑長與圓心到弦的距離之差,F(xiàn)有圓心角為,半徑等于4米的弧田.下列說法正確的是( )

A. “弦”米,“矢”

B. 按照經(jīng)驗公式計算所得弧田面積()平方米

C. 按照弓形的面積計算實際面積為()平方米

D. 按照經(jīng)驗公式計算所得弧田面積比實際面積少算了大約0.9平方米(參考數(shù)據(jù) )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過點A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點.

(1)k的取值范圍;

(2)12,其中O為坐標原點,求|MN|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品近一個月內(nèi)(30天)預計日銷量(件)與時間t()的關(guān)系如圖1所示,單價(萬元/件)與時間t()的函數(shù)關(guān)系如圖2所示,(t為整數(shù))

1)試寫出的解析式;

2)求此商品日銷售額的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校進行文科、理科數(shù)學成績對比,某次考試后,各隨機抽取100名同學的數(shù)學考試成績進行統(tǒng)計,其頻率分布表如下.

(Ⅰ)根據(jù)數(shù)學成績的頻率分布表,求理科數(shù)學成績的中位數(shù)的估計值;

(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認為數(shù)學成績與文理科有關(guān):

(Ⅲ)設文理科數(shù)學成績相互獨立,記表示事件“文科、理科數(shù)學成績都大于等于120分”,估計的概率.

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習冊答案