【題目】在平面直角坐標(biāo)系中,拋物線: ,直線與拋物線交于, 兩點(diǎn).
(1)若直線, 的斜率之積為,證明:直線過定點(diǎn);
(2)若線段的中點(diǎn)在曲線: 上,求的最大值.
【答案】(1)見解析(2)
【解析】試題分析:(1)直線的方程為,由,得: ,根據(jù)韋達(dá)定理及斜率公式可得,得,∴直線的方程為,直線過定點(diǎn);(2)設(shè),則, ,代入拋物線方程可得,由,可得,結(jié)合,利用弦長(zhǎng)公式可得 .
試題解析:設(shè), ,
(1)由題意可知直線的斜率存在,設(shè)直線的方程為,
由,得: ,
, , ,
,
由已知: ,所以,
∴直線的方程為,所以直線過定點(diǎn).
(2)設(shè),則, ,
將帶入: 得:
,∴.
∵,∴,∴,
又∵ ,∴,
故的取值范圍是: .
,將代入得:
,
當(dāng)且僅當(dāng),即時(shí)取等號(hào),
所以的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有人持金出五關(guān),前關(guān)二而稅一,次關(guān)三而稅一,次關(guān)四而稅一,次關(guān)五而稅一,次關(guān)六而稅一,并五關(guān)所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關(guān),第1關(guān)收稅金 ,第2關(guān)收稅金為剩余金的 ,第3關(guān)收稅金為剩余金的 ,第4關(guān)收稅金為剩余金的 ,第5關(guān)收稅金為剩余金的 ,5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關(guān)所收稅金之和,恰好重1斤,問原來持金多少?”改成假設(shè)這個(gè)原來持金為x,按此規(guī)律通過第8關(guān),則第8關(guān)需收稅金為x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)已知定點(diǎn),是否存在過的直線,使與橢圓交于,兩點(diǎn),且以為直徑的圓過橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點(diǎn).
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,函數(shù) .
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊,其中A為銳角, ,c=1,且f(A)=1,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= ,若曲線f(x)在點(diǎn)(e,f(e))處的切線與直線e2x﹣y+e=0垂直(其中e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在(m,m+1)上存在極值,求實(shí)數(shù)m的取值范圍;
(2)求證:當(dāng)x>1時(shí), > .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四個(gè)實(shí)數(shù)根,則實(shí)數(shù)ω的取值范圍為( )
A.( , ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2 .
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com