【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸正方向建立平面直角坐標(biāo)系,曲線的參數(shù)方程是為參數(shù)).

Ⅰ)將曲線的參數(shù)方程化為普通方程;

Ⅱ)求曲線與曲線交點(diǎn)的極坐標(biāo)

【答案】(Ⅰ);(Ⅱ)

【解析】試題分析:

Ⅰ)將曲線的參數(shù)方程消去參數(shù)可得普通方程.Ⅱ)方法一:把曲線的普通方程化為極坐標(biāo)方程,然后結(jié)合消去,可得.進(jìn)而可得所以,可得,故可得交點(diǎn)的極坐標(biāo).方法二:將方程都化為直角坐標(biāo)方程后,可求得曲線的交點(diǎn)坐標(biāo),然后再化成極坐標(biāo).

試題解析:

Ⅰ)由曲線的參數(shù)方程得,

兩式相乘可得曲線的普通方程為

Ⅱ)(方法一)將,代入曲線的普通方程,

,得,

代入上式得,

解得,

所以,解得

故所求交點(diǎn)的極坐標(biāo)為

(方法二)由,

故曲線的直角坐標(biāo)為

解方程組,得

,,,,因此對應(yīng)點(diǎn)的極坐標(biāo)為

同理得對應(yīng)點(diǎn)的極坐標(biāo)為,

故所求交點(diǎn)的極坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個,求實(shí)數(shù)的取值范圍;

)當(dāng)時,若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適當(dāng)疏導(dǎo)電價矛盾,保障電力供應(yīng),支持可再生能源發(fā)展,促進(jìn)節(jié)能減排,安徽省于2012年推出了省內(nèi)居民階梯電價的計算標(biāo)準(zhǔn):以一個年度為計費(fèi)周期、月度滾動使用,第一階梯電量:年用電量2160度以下(含2160度),執(zhí)行第一檔電價0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執(zhí)行第二檔電價0.6153元/度;第三階梯電量:年用電量4200度以上,執(zhí)行第三檔電價0.8653元/度.

某市的電力部門從本市的用電戶中隨機(jī)抽取10戶,統(tǒng)計其同一年度的用電情況,列表如下表:

用戶編號

1

2

3

4

5

6

7

8

9

10

年用電量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)試計算表中編號為10的用電戶本年度應(yīng)交電費(fèi)多少元?

(Ⅱ)現(xiàn)要在這10戶家庭中任意選取4戶,對其用電情況作進(jìn)一步分析,求取到第二階梯電量的戶數(shù)的分布列與期望;

(Ⅲ)以表中抽到的10戶作為樣本估計全市的居民用電情況,現(xiàn)從全市居民用電戶中隨機(jī)地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是常數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對任意,切線經(jīng)過定點(diǎn);

(Ⅱ)當(dāng)時,設(shè),的兩個正的零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線1(a0,b0)的右焦點(diǎn)為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點(diǎn)O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點(diǎn)為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若交于兩點(diǎn),點(diǎn)的極坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計2018年春節(jié)期間微信紅包收發(fā)總量達(dá)到460億個。收發(fā)紅包成了生活的調(diào)味劑。某網(wǎng)絡(luò)運(yùn)營商對甲、乙兩個品牌各5種型號的手機(jī)在相同環(huán)境下,對它們搶到的紅包個數(shù)進(jìn)行統(tǒng)計,得到如下數(shù)據(jù):

型號

手機(jī)品牌

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

Ⅰ)如果搶到紅包個數(shù)超過5個的手機(jī)型號為優(yōu),否則非優(yōu),請據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個數(shù)與手機(jī)品牌有關(guān)?

Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號中選出2種型號的手機(jī)進(jìn)行大規(guī)模宣傳銷售.求型號Ⅰ或型號Ⅱ被選中的概率.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程為,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案