解析:∵線段AB在直線l:y=x上,且線段AB的長為,?
∴設(shè)M(x,y)、A(t,t)、B(t+1,t+1)(t為參數(shù)),則直線PA的方程為
(t≠-2),①
直線QB的方程為(t≠-1).②
∵M(x,y)是直線PA、QB的交點,
∴x、y是由①②組成的方程組的解,由①②消去參數(shù)t,得x2-y2+2x-2y+8=0.③
當(dāng)t=-2時,PA的方程為x=-2,QB的方程為3x-y+2=0,此時的交點為M(-2,-4).
當(dāng)t=-1時,QB的方程為x=0,PA的方程為3x+y+4=0,此時的交點為M(0,-4).
經(jīng)驗證,點(-2,-4)和(0,-4)均滿足方程③.
故點M的軌跡方程為x2-y2+2x-2y+8=0.
溫馨提示:由于長為的線段AB在直線l上移動,故只需借助參數(shù)表示出A、B的坐標(biāo),從而得直線PA、QB的方程,而M是這兩直線的交點,消去參數(shù)即得交點的軌跡方程.
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知兩點P(-2,2),Q(0,2)以及一條直線:L:y=x,設(shè)長為的線段AB在直線L上移動,如圖。求直線PA和QB的交點M的軌跡方程。(要求把結(jié)果寫成普通方程)
|
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com