精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在四棱錐中,交于點,,.

(Ⅰ)在線段上找一點,使得平面,并證明你的結論;

(Ⅱ)若,,求二面角的余弦值.

【答案】(Ⅰ)見解析;(Ⅱ).

【解析】

I)取線段上靠近的三等分點,連接,因為,,所以,由,得,所以,即可證明結論成立.

II)以為坐標原點,以直線分別為軸,過點且與平面垂直的直線為軸建立空間直角坐標系,求出平面的一個法向量為,平面的個法向量為,由向量法即可求出二面角的平面角.

I)取線段上靠近的三等分點,連接.因為,,所以,所以.而,所以,所以.而平面.平面,故平面.

II)易知 為等邊三角形,所以.又,故,所以有.由已知可得,又,所以平面.以為坐標原點,以直線分別為軸,過點且與平面垂直的直線為軸建立如圖所示的空間直角坐標系.

,則,所以,,,,則,,,.

設平面的一個法向量為,則有

,則,所以.

設平面的個法向量為,則有

,則,所以.

所以.

因為二面角為銳角,故所求二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求曲線在點處的切線方程;

2)若上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知首項為的等比數列不是遞減數列,其前n項和為,且成等差數列。

1)求數列的通項公式;

2)設,求數列的最大項的值與最小項的值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

在直角坐標系中,曲線的參數方程為為參數),直線的參數方程為為參數).

(1)求的直角坐標方程;

(2)若曲線截直線所得線段的中點坐標為,求的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,一幅壁畫的最高點處離地面米,最低點處離地面.正對壁畫的是一條坡度為的甬道(坡度指斜坡與水平面所成角的正切值),若從離斜坡地面米的處觀賞它.

1)若對墻的投影(即過的垂線垂足為投影)恰在線段(包括端點)上,求點離墻的水平距離的范圍;

2)在(1)的條件下,當點離墻的水平距離為多少時,視角)最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)討論函數的單調性.

(Ⅱ)若時,存在兩個正實數滿足,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,,∠ABD=ADB.

(Ⅰ)求證:;

(Ⅱ)若,,,,點的中點,求平面切割三棱錐得到的上下兩個幾何體的體積之比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:Cx=若不建隔熱層,每年能源消耗費用為8萬元。設fx)為隔熱層建造費用與20年的能源消耗費用之和。

)求k的值及f(x)的表達式。

)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校開展我身邊的榜樣評選活動,現對3名候選人甲、乙、丙進行不記名投票,投票要求詳見選票.這3名候選人的得票數(不考慮是否有效)分別為總票數的88%,75%,46%,則本次投票的有效率(有效票數與總票數的比值)最高可能為百分之________

我身邊的榜樣評選選票

候選人

符號

注:

1.同意畫“○”,不同意畫“×”

2每張選票“○”的個數不超過2時才為有效票

查看答案和解析>>

同步練習冊答案