【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.
【答案】
(1)證明:取B1C1的中點(diǎn)G,連結(jié)A1G,
∵B1F=3FC1,F(xiàn)G=FC1,∴EF∥A1G,
在等邊△A1B1C1中,由G是B1C1的中點(diǎn),知A1G⊥B1C1,
∴EF⊥B1C1,
∵三棱柱ABC﹣A1B1C1是直棱柱,∴BB1⊥平面A1B1C1,
又∵EF平面A1B1C1,∴BB1⊥EF,
∵BB1∩B1C1=B1,∴EF⊥平面BB1C1C,
又EF平面AEF,∴平面AEF⊥平面BB1C1C
(2)解:(2)以A為坐標(biāo)原點(diǎn),以AA1,AC分別為y軸,z軸,建立空間直角坐標(biāo)系,
設(shè)直三棱柱ABC﹣A1B1C1的棱均為2,則A(0,0,0),B( ),E(0,1,2),
∴ =(0,1,2), =( ),
設(shè) =(x,y,z)是平面ABE的一個(gè)法向量,
由 ,取x=﹣2,得 =(﹣2,2 ,﹣ ),
平面AEC1的一個(gè)法向量 =(1,0,0),
設(shè)二面角C1﹣AE﹣B的平面角為θ,
則cosθ= = .
∴二面角C1﹣AE﹣B的余弦值為 .
【解析】(1)取B1C1的中點(diǎn)G,連結(jié)A1G,推導(dǎo)出EF∥A1G,A1G⊥B1C1 , 從而EF⊥B1C1 , 由三棱柱ABC﹣A1B1C1是直棱柱,得到BB1⊥EF,從而EF⊥平面BB1C1C,由此能證明平面AEF⊥平面BB1C1C.(2)以A為坐標(biāo)原點(diǎn),以AA1 , AC分別為y軸,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C1﹣AE﹣B的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,在下列命題中,其中正確命題的序號(hào)是.
⑴曲線 必存在一條與 軸平行的切線;
⑵函數(shù) 有且僅有一個(gè)極大值,沒(méi)有極小值;
⑶若方程 有兩個(gè)不同的實(shí)根,則 的取值范圍是 ;
⑷對(duì)任意的 ,不等式 恒成立;
⑸若 ,則 ,可以使不等式 的解集恰為 ;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校有六間不同的電腦室,每天晚上至少開(kāi)放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個(gè)結(jié)果:① ;②26-7;③ ,其中正確的結(jié)論是( )
A.僅有①
B.僅有②
C.②與③
D.僅有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1=1,a3=9,且an=an﹣1+λn﹣1(n≥2).
(1)求λ的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,且數(shù)列{bn}的前n項(xiàng)和為Sn , 求S2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們國(guó)家正處于老齡化社會(huì)中,老有所依也是政府的民生工程.某市共有戶籍人口400萬(wàn),其中老人(年齡60歲及以上)人數(shù)約有66萬(wàn),為了解老人們的健康狀況,政府從 老人中隨機(jī)抽取600人并委托醫(yī)療機(jī)構(gòu)免費(fèi)為他們進(jìn)行健康評(píng)估,健康狀況共分為不能 自理、不健康尚能自理、基本健康、健康四個(gè)等級(jí),并以80歲為界限分成兩個(gè)群體進(jìn)行 統(tǒng)計(jì),樣本分布被制作成如圖表:
(1)若采取分層抽樣的方法再?gòu)臉颖局械牟荒茏岳淼睦先酥谐槿?6人進(jìn)一步了解他們的生活狀況,則兩個(gè)群體中各應(yīng)抽取多少人?
(2)估算該市80歲及以上長(zhǎng)者占全市戶籍人口的百分比;
(3)據(jù)統(tǒng)計(jì)該市大約有五分之一的戶籍老人無(wú)固定收入,政府計(jì)劃為這部分老人每月發(fā) 放生活補(bǔ)貼,標(biāo)準(zhǔn)如下:①80歲及以上長(zhǎng)者每人每月發(fā)放生活補(bǔ)貼200元;②80歲以下 老人每人每月發(fā)放生活補(bǔ)貼120元;③不能自理的老人每人每月額外發(fā)放生活補(bǔ)貼100 元.試估計(jì)政府執(zhí)行此計(jì)劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題 :直線 與直線 之間的距離不大于1,命題 :橢圓 與雙曲線 有相同的焦點(diǎn),則下列命題為真命題的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐 中, 平面 , , , 分別在線段 上, , , 是 的中點(diǎn).
(1)證明: 平面 ;
(2)若二面角 的大小為 ,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f (x)=Asin(ωx+φ),(0<φ<π)的圖象如圖所示,若f (x0)=3,x0∈( , ),則sinx0的值為( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com