【題目】從含有兩件正品和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.

(1)每次取出不放回;

(2)每次取出后放回.

【答案】1

2

【解析】

試題

(1)由題意列出所有可能的結(jié)果,共有6種,然后結(jié)合古典概型公式可得每次取出不放回的概率為;

(2) 由題意列出所有可能的結(jié)果,共有9種,然后結(jié)合古典概型公式可得每次取出放回的概率為

試題解析:

(1)每次取出一個(gè),取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個(gè),即.用A表示取出的兩件中,恰好有一件次品這一事件,則.

(2)由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件是每次取出一個(gè),取后放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有9個(gè),即

B表示取出的兩種中,恰好有一件次品這一事件,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,ABBC,DAC的中點(diǎn),O為四邊形B1C1CB的對(duì)角線的交點(diǎn),ACBC1.求證:

(1)OD∥平面A1ABB1;

(2)平面A1C1CA⊥平面BC1D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為緩解交通運(yùn)行壓力,某市公交系統(tǒng)實(shí)施疏堵工程.現(xiàn)調(diào)取某路公交車早高峰時(shí)段全程運(yùn)輸時(shí)間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為組;從疏堵工程完成后的數(shù)據(jù)中隨機(jī)抽取5個(gè)數(shù)據(jù),記為組.

組:

組:

(Ⅰ)該路公交車全程運(yùn)輸時(shí)間不超過(guò)分鐘,稱為“正點(diǎn)運(yùn)行”.從,兩組數(shù)據(jù)中各隨機(jī)抽取一個(gè)數(shù)據(jù),求這兩個(gè)數(shù)據(jù)對(duì)應(yīng)的兩次運(yùn)行中至少有一次“正點(diǎn)運(yùn)行”的概率;

(Ⅱ)試比較,兩組數(shù)據(jù)方差的大。ú灰笥(jì)算),并說(shuō)明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)底面水平放置的倒圓錐形容器,它的軸截面是正三角形,容器內(nèi)有一定量的水,水深為. 若在容器內(nèi)放入一個(gè)半徑為 1 的鐵球后,水面所在的平面恰好經(jīng)過(guò)鐵球的球心(水沒有溢出),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電信公司從所在地的1000名使用4G手機(jī)用戶中,隨機(jī)抽取了20名,對(duì)其收集每日使用流量(單位:M)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

流量x

0≤x<5

5≤x<10

10≤x<15

15≤x<20

20≤x<25

x≥25

人數(shù)

1

6

6

5

2

0

(1)估計(jì)這20名4G手機(jī)用戶每日使用流量(單位:M)的平均值;
(2)估計(jì)此地1000名使用4G手機(jī)用戶中每日使用流量不少于10M用戶數(shù);
(3)在15≤x<20和20≤x<25兩組用戶中,隨機(jī)抽取兩人作進(jìn)一步問(wèn)卷調(diào)查,求所抽取的兩人恰好來(lái)自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]頻數(shù)分別為8,2.

(1)求樣本容量和頻率分布直方圖中的的值;

(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù);

(3)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生,求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線方程為.

(1)求實(shí)數(shù)的值及函數(shù)的最大值;

(2)證明:對(duì)任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和圓

(1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為2,求直線的方程;

(2)設(shè)為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)的無(wú)窮多對(duì)互相垂直的直線,且直線被圓截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=|x﹣3|+|x﹣4|.
(1)求函數(shù) 的定義域;
(2)若存在實(shí)數(shù)x滿足f(x)≤ax﹣1,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案