【題目】法國有個名人叫做布萊爾·帕斯卡,他認識兩個賭徒,這兩個賭徒向他提出一個問題,他們說,他們下賭金之后,約定誰先贏滿5局,誰就獲得全部賭金700法郎,賭了半天,甲贏了4局,乙贏了3局,時間很晚了,他們都不想再賭下去了.假設每局兩賭徒輸贏的概率各占,每局輸贏相互獨立,那么這700法郎如何分配比較合理(

A.400法郎,乙300法郎B.500法郎,乙200法郎

C.525法郎,乙175法郎D.350法郎,乙350法郎

【答案】C

【解析】

通過分析甲可能獲勝的概率來分得獎金,假定再賭一局,甲獲勝的概率為;若再賭兩局,甲才獲勝的概率為,從而得甲獲勝的概率為,可得出獎金的分配金額.

假定再賭一局,甲獲勝的概率為;若再賭兩局,甲才獲勝的概率為

∴甲獲勝的概率為,∴甲應分得:(法郎),乙應分得:(法郎).

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在暑假社會實踐活動中,靜靜同學為了研究日最高氣溫對某家奶茶店的A品牌冷飲銷量的影響,統(tǒng)計得到711日至15日該奶茶店A品牌冷飲的日銷量y(杯)與當日最高氣溫x(℃)的對比表:

日期

711

712

713

714

715

最高氣溫x(℃)

31

33

32

34

35

銷量y(杯)

55

58

60

63

64

1)由以上數(shù)據(jù)求出y關于x的線性回歸方程, 若天氣預報717日的最高氣溫為37℃,請預測當天該奶茶店A品牌冷飲的銷量(取整數(shù))

2)從這5天中任選2天,求選出的2天最高氣溫都達到33℃以上(含33℃)的概率.參考公式及參考數(shù)據(jù)如下:

,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學海洋環(huán)境學院的8名同學符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學分成甲乙兩個小組,每組4名同學,其中大一的兩名同學必須分到同一組,則分到乙組的4名同學中恰有2名同學是來自于同一年級的分組方式共有__________種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十三五規(guī)劃確定了到2020年消除貧困的宏偉目標,打響了精準扶貧的攻堅戰(zhàn),為完成脫貧任務,某單位在甲地成立了一家醫(yī)療器械公司吸納附近貧困村民就工,已知該公司生產(chǎn)某種型號醫(yī)療器械的月固定成本為20萬元,每生產(chǎn)1千件需另投入5.4萬元,設該公司一月內(nèi)生產(chǎn)該型號醫(yī)療器械x千件且能全部銷售完,每千件的銷售收入為萬元,已知

1)請寫出月利潤y(萬元)關于月產(chǎn)量x(千件)的函數(shù)解析式;

2)月產(chǎn)量為多少千件時,該公司在這一型號醫(yī)療器械的生產(chǎn)中所獲月利潤最大?并求出最大月利潤(精確到0.1萬元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】南充高中扎實推進陽光體育運動,積極引導學生走向操場,走進大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動時長35分鐘.現(xiàn)為了了解學生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調(diào)查,按平均每日體育鍛煉時間分組統(tǒng)計如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時間不低于120分鐘的學生稱為鍛煉達人”.

1)將頻率視為概率,估計我校7000名學生中鍛煉達人有多少?

2)從這100名學生的鍛煉達人中按性別分層抽取5人參加某項體育活動.

①求男生和女生各抽取了多少人;

②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

(1)求橢圓的標準方程;

(2)若不經(jīng)過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,角所對的邊分別為,且

(1)求的值;

(2)若,求的面積的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個函數(shù),如果對任意一個三角形,只要它的三邊長、都在的定義域內(nèi),就有、、也是某個三角形的三邊長,則稱保三角形函數(shù)”.

(1)若是定義在上的周期函數(shù),且值域為,證明:不是保三角形函數(shù);

(2)若是保三角形函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的右頂點,離心率為,為坐標原點.

)求橢圓的方程;

)已知(異于點)為橢圓上一個動點,過作線段的垂線交橢圓于點,求的取值范圍.

查看答案和解析>>

同步練習冊答案