已知函數(shù)
(Ⅰ)若函數(shù)在其定義域上為單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若函數(shù)的圖像在處的切線的斜率為0,,已知求證:
(Ⅲ)在(2)的條件下,試比較與的大小,并說明理由.
(Ⅰ);(Ⅱ)略;(Ⅲ)<.
解析試題分析:(Ⅰ)利用導(dǎo)數(shù)求解單調(diào)性,把恒成立轉(zhuǎn)化為最值;(Ⅱ)可用數(shù)學(xué)歸納法來證明;(Ⅲ)通過放縮法來解決與的大小比較問題.
試題解析:(Ⅰ) ∵f(1)="a-b=0" ∴a=b
∴
∴
要使函數(shù)在其定義域上為單調(diào)函數(shù),則在定義域(0,+∞)內(nèi)恒大于等于0或恒小于等于0,
當a=0時,在(0,+∞)內(nèi)恒成立;
當a>0時, 恒成立,則∴
當a<0時, 恒成立
∴a的取值范圍是: 5分
(Ⅱ) ∴a=1 則:
于是
用數(shù)學(xué)歸納法證明如下:
當n=1時,,不等式成立;
假設(shè)當n=k時,不等式成立,即也成立,
當n=k+1時,
所以當n=k+1時不等式成立,
綜上得對所有時,都有 10分
(Ⅲ)由(2)得
于是
所以 ,
累稱得:則
所以 13分
考點:利用導(dǎo)數(shù)處理單調(diào)性,數(shù)列中的數(shù)學(xué)歸納法、放縮法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,是函數(shù)的兩個零點,其中常數(shù),,設(shè).
(Ⅰ)用,表示,;
(Ⅱ)求證:;
(Ⅲ)求證:對任意的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足a1=λ,an+1=an+n-4,λ∈R,n∈N+,對任意λ
∈R,證明:數(shù)列{an}不是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知多項式f(n)=n5+n4+n3-n.
(1)求f(-1)及f(2)的值;
(2)試探求對一切整數(shù)n,f(n)是否一定是整數(shù)?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)曲線在點處的切線斜率為,且.對一切實數(shù),不等式恒成立(≠0).
(1) 求的值;
(2) 求函數(shù)的表達式;
(3) 求證:>.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
復(fù)數(shù)(i是虛數(shù)單位)的共軛復(fù)數(shù)為( ).
A.2-i | B.-2-i | C.-2+i | D.2+i |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com