【題目】下列說法中,正確的是 ( )
A.當(dāng)x>0且x≠1時,
B.當(dāng)x>0時,
C.當(dāng)x≥2時,的最小值為2
D.當(dāng)0<x≤2時,無最大值

【答案】B
【解析】當(dāng)0<x<1時,lgx<0,所以 , 故A不正確;
當(dāng)x>0時, , 當(dāng)且僅當(dāng)即x=1時取"="。故B正確;
當(dāng)x≥2時, , 當(dāng)且僅當(dāng)時取"=",但因 , 所以C不正確;
因為f(x)=x在(0,2]上單調(diào)遞增,在(0,2]上單調(diào)遞增,所以函數(shù)在(0,2]上單調(diào)遞增,所以。故D不正確。
【考點精析】本題主要考查了函數(shù)的單調(diào)性和基本不等式的相關(guān)知識點,需要掌握注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);函數(shù)的單調(diào)性還有單調(diào)不增,和單調(diào)不減兩種;基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“能被3整除”的第二步中,時,為了使用假設(shè),應(yīng)將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域;

2)判斷的單調(diào)性,及單調(diào)區(qū)間;

3)試求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)在平面直角坐標(biāo)系中,橢圓的長軸長,短軸長

(1)求橢圓的方程;

(2)記橢圓的左右頂點,分別過軸的垂線交直線于點, 橢圓上位于軸上方的動點,直線,分別交直線于點,

(i)當(dāng)直線的斜率為2時,求的面積;

(ii)求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在北京召開的第24屆國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客.我們教材中利用該圖作為一個說法的一個幾何解釋,這個說法正確的是(

A.如果,那么B.如果,那么

C.對任意正實數(shù),有, 當(dāng)且僅當(dāng)時等號成立D.對任意正實數(shù),有,當(dāng)且僅當(dāng)時等號成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},等比數(shù)列{bn}滿足:a1b1=1,a2b2,2a3b3=1.

(1)求數(shù)列{an},{bn}的通項公式;

(2)cnanbn,求數(shù)列{cn}的前n項和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2(lga2)xlgbf(1)=2,當(dāng)x∈Rf(x)≥2x恒成立,求實數(shù)a的值,并求此時f(x)的最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx)是定義在 R上的偶函數(shù),當(dāng) x≥0 時,fx)=x2+ax+b 的部分圖象如圖所示:

1)求 fx)的解析式;

2)在網(wǎng)格上將 fx)的圖象補充完整,并根據(jù) fx)圖象寫出不等式 fx≥1的解集.

查看答案和解析>>

同步練習(xí)冊答案