【題目】已知圓與直線相切.
(1)求圓的方程;
(2)過點的直線截圓所得弦長為,求直線的方程;
(3)設(shè)圓與軸的負半抽的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,證明:直線過定點,并求出該定點坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;在80mg/100ml(含80)以上時,屬于醉酒駕車.某市公安局交通管理部門在某路段的一次攔查行動中,依法檢查了300輛機動車,查處酒后駕車和醉酒駕車的駕駛員共20人,檢測結(jié)果如表:
酒精含量(mg/100ml) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70)[] | [70,80) | [80,90) | [90,100] |
人數(shù) | 3 | 4 | 1 | 4 | 2 | 3 | 2 | 1 |
(Ⅰ)繪制出檢測數(shù)據(jù)的頻率分布直方圖(在圖中用實線畫出矩形框即可);
(Ⅱ)求檢測數(shù)據(jù)中醉酒駕駛的頻率,并估計檢測數(shù)據(jù)中酒精含量的眾數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,四邊形為等腰梯形,,且于點為的中點.將沿著折起至的位置,得到如圖②所示的四棱錐.
(1)求證:平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費,為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是直線與橢圓的一個公共點,分別為該橢圓的左右焦點,設(shè)取得最小值時橢圓為.
(I)求橢圓的方程;
(II)已知是橢圓上關(guān)于軸對稱的兩點,是橢圓上異于的任意一點,直線分別與軸交于點,試判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各式:
(1);
(2)已知,則;
(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對稱;
(4)函數(shù)的定義域是R,則m的取值范圍是;
(5)函數(shù)的遞增區(qū)間為.
正確的有______________________.(把你認為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|-1≤x≤2},B={x|m-1≤x≤2m+1},已知BA.
(1)當(dāng)x∈N時,求集合A的子集的個數(shù);
(2)求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的極值點,1和是函數(shù)的兩個不同零點,且,求.
(2)若對任意,都存在(為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com