已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點(1,
3
2
)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點,且△AF2B的面積為
12
2
7
,求直線l的方程.
(1)由題意可設橢圓C的方程為
x2
a2
+
y2
b2
=1
(a>b>0),
由|F1F2|=2得c=1,∴F1(-1,0),F(xiàn)2(1,0),
又點(1,
3
2
)在橢圓C上,∴2a=
(1+1)2+(
3
2
)2
+
(1-1)2+(
3
2
)2
=4
,a=2.則b2=a2-c2=4-1=3.
∴橢圓C的方程為
x2
4
+
y2
3
=1
;
(2)如圖,
設直線l的方程為x=ty-1,A(x1,y1),B(x2,y2),
把x=ty-1代入
x2
4
+
y2
3
=1
,得:(3t2+4)y2-6ty-9=0
y1+y2=
6t
3t2+4
y1y2=
-9
3t2+4

|y1-y2|=
(y1+y2)2-4y1y2
=
(
6t
3t2+4
)2-4×
-9
(3t2+4)
=
12
t2+1
3t2+4
,
S=
1
2
|F1F2||y1-y2|=
12
t2+1
3t2+4
=
12
2
7
,
解得:t2=-
17
18
(舍)或t2=1,t=±1.
故所求直線方程為:x±y+1=0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=2px(p>0)的焦點F的直線與拋物線交于A,B兩點,拋物線準線與x軸交于C點,若∠CBF=90°,則|AF|-|BF|的值為( 。
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點,F(xiàn)1,F(xiàn)2是橢圓的兩焦點,且滿足|AF1|+|AF2|=4.
(I)求橢圓的標準方程;
(II)求過A(1,1)與橢圓相切的直線方程;
(III)設點C、D是橢圓上兩點,直線AC、AD的傾斜角互補,試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且橢圓Γ的右焦點F與拋物線y2=4x的焦點重合.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)過左焦點F的直線l與橢圓交于A,B兩點,是否存在直線l,使得OA⊥OB,O為坐標原點,若存在,求出l的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

直線L:
x
4
+
y
3
=1與橢圓E:
x2
16
+
y2
9
=1相交于A,B兩點,該橢圓上存在點P,使得△PAB的面積等于3,則這樣的點P共有( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,長軸端點與短軸端點間的距離為
5

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點D(0,4)的直線l與橢圓C交于兩點E,F(xiàn),O為坐標原點,若OE⊥OF,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=x+m與曲線y=
1-2x2
有兩個交點,則實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一坐標系中,方程
x2
a2
+
y2
b2
=1
與bx2=-ay(a>b>0)表示的曲線大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓C:x2+
y2
a2
=1(a>1)
的離心率為e,點F為其下焦點,點O為坐標原點,過F的直線l:y=mx-c(其中c=
a2-1
)與橢圓C相交于P,Q兩點,且滿足:
OP
OQ
=
a2(c2-m2)-1
2-c2

(Ⅰ)試用a表示m2
(Ⅱ)求e的最大值;
(Ⅲ)若e∈(
1
3
,
1
2
)
,求m的取值范圍.

查看答案和解析>>

同步練習冊答案