直線y=x+m與曲線y=
1-2x2
有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是______.
由題意可得曲線y=
1-2x2
表示焦點(diǎn)在y軸上的橢圓y2+2x2=1的上半部分
聯(lián)立方程
y=x+m
y2+2x2=1
可得3x2+2mx+m2-1=0
△=4m2-12(m2-1)=0時(shí),m=
6
2
或m=-
6
2

結(jié)合圖形可知,當(dāng)m=
6
2
時(shí),直線y=x+m與橢圓y2+2x2=1的上半部分相切
當(dāng)直線y=x+m過A(-
2
2
,0
)時(shí),直線y=x+m與橢圓y2+2x2=1的上半部分有2個(gè)交點(diǎn),此時(shí)m=
2
2

所以,
2
2
≤m<
6
2

故答案為:[
2
2
,
6
2
)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
A.5B.
5
2
C.
3
2
D.
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知F1,F(xiàn)2為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn).
(Ⅰ)若點(diǎn)P為雙曲線與圓x2+y2=a2+b2的一個(gè)交點(diǎn),且滿足|PF1|=2|PF2|,求此雙曲線的離心率;
(Ⅱ)設(shè)雙曲線的漸近線方程為y=±x,F(xiàn)2到漸近線的距離是
2
,過F2的直線交雙曲線于A,B兩點(diǎn),且以AB為直徑的圓與y軸相切,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)(1,
3
2
)在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為
12
2
7
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=a交拋物線y=x2于A,B兩點(diǎn),若該拋物線上存在點(diǎn)C,使得∠ACB為直角,則a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動(dòng)點(diǎn)P與兩個(gè)定點(diǎn)A(-6,0),B(6,0)連線的斜率之積為-
1
3
,P點(diǎn)軌跡為C,
(1)求曲線C的方程;
(2)直線l過M(-2,2)與C交于E,G兩點(diǎn),且線段EG中點(diǎn)是M,求l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)拋物線C1:y2=4mx(m>0)的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2,以F1,F(xiàn)2為焦點(diǎn),離心率為
1
2
的橢圓C2與拋物線C1的一個(gè)交點(diǎn)為P.
(1)若橢圓的長半軸長為2,求拋物線方程;
(2)在(1)的條件下,直線l經(jīng)過橢圓C2的右焦點(diǎn)F2,與拋物線C1交于A1,A2兩點(diǎn),如果|A1A2|等于△PF1F2的周長,求l的斜率;
(3)是否存在實(shí)數(shù)m,使得△PF1F2的邊長是連續(xù)的自然數(shù)?若存在,求出m的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知F是拋物線y2=4x上的焦點(diǎn),P是拋物線上的一個(gè)動(dòng)點(diǎn),若動(dòng)點(diǎn)M滿足
FP
=2
FM
,則M的軌跡方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線l:y=kx+1與雙曲線C:3x2-y2=1相交于不同的A,B兩點(diǎn).
(1)求AB的長度;
(2)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)?若存在,求出k的值,若不存在,寫出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案