過(guò)拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)O是坐標(biāo)原點(diǎn),若|AF|=5,則△AOB的面積為( 。
A.5B.
5
2
C.
3
2
D.
17
8
根據(jù)題意,拋物線y2=4x的焦點(diǎn)為F(1,0).
設(shè)直線AB的斜率為k,可得直線AB的方程為y=k(x-1),
y=k(x-1)
y2=4x
消去x,得y2-
4
k
y-4=0,
設(shè)A(x1,y1)、B(x2,y2),由根與系數(shù)的關(guān)系可得y1y2=-4.
根據(jù)拋物線的定義,得|AF|=x1+
p
2
=x1+1=5,解得x1=4,
代入拋物線方程得:y12=4×4=16,解得y1=±4,
∵當(dāng)y1=4時(shí),由y1y2=-4得y2=-1;當(dāng)y1=-4時(shí),由y1y2=-4得y2=1,
∴|y1-y2|=5,即AB兩點(diǎn)縱坐標(biāo)差的絕對(duì)值等于5.
因此△AOB的面積為:
S=△AOB=S△AOF+S△BOF=
1
2
|OF|•|y1|+
1
2
|OF|•|y2|=
1
2
|OF|•|y1-y2|=
1
2
×1×5=
5
2

故選:B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)B(0,1),A,C為橢圓C:
x2
a2
+y2
=1(a>1)上的兩點(diǎn),△ABC是以B為直角頂點(diǎn)的直角三角形.
(1)△ABC能否為等腰三角形?若能,這樣的三角形有幾個(gè)?
(2)當(dāng)a=2時(shí),求線段AC的中垂線l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)經(jīng)過(guò)點(diǎn)P(1,
2
)
,其離心率e=
2
2

(Ⅰ)求橢圓M的方程;
(Ⅱ)直線l:y=
2
x+m
交橢圓于A、B兩點(diǎn),且△PAB的面積為
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),拋物線準(zhǔn)線與x軸交于C點(diǎn),若∠CBF=90°,則|AF|-|BF|的值為( 。
A.
p
2
B.pC.
3p
2
D.2p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
3
,直線l:y=x+2與圓x2+y2=b2相切.
(1)求橢圓C的方程;
(2)設(shè)直線l與橢圓C的交點(diǎn)為A,B,求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線y=kx+1與曲線x=
1-4y2
有兩個(gè)不同的交點(diǎn),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓E的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率e=
2
3
,過(guò)點(diǎn)C(-1,0)的直線l交橢圓于A、B兩點(diǎn),且滿足:
CA
BC
(λ≥2).
(1)若λ為常數(shù),試用直線l的斜率k(k≠0)表示三角形OAB的面積;
(2)若λ為常數(shù),當(dāng)三角形OAB的面積取得最大值時(shí),求橢圓E的方程;
(3)若λ變化,且λ=k2+1,試問(wèn):實(shí)數(shù)λ和直線l的斜率k(k∈R)分別為何值時(shí),橢圓E的短半軸長(zhǎng)取得最大值?并求出此時(shí)的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(1,1)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩焦點(diǎn),且滿足|AF1|+|AF2|=4.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)求過(guò)A(1,1)與橢圓相切的直線方程;
(III)設(shè)點(diǎn)C、D是橢圓上兩點(diǎn),直線AC、AD的傾斜角互補(bǔ),試判斷直線CD的斜率是否為定值?若是定值,求出定值;若不是定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線y=x+m與曲線y=
1-2x2
有兩個(gè)交點(diǎn),則實(shí)數(shù)m的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案