【題目】已知函數(shù)f(x)=x3ax2bxa2-7ax=1處取得極大值10,則的值為(  )

A. B. -2

C. -2或- D. 2或-

【答案】A

【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,

∴f′(x)=3x2+2ax+b,

f(x)=x3+ax2+bx﹣a2﹣7ax=1處取得極大值10,

∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,

∴a2+8a+12=0,

∴a=﹣2,b=1a=﹣6,b=9.

當(dāng)a=﹣2,b=1時(shí),f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),

當(dāng)x1時(shí),f′x)<0,當(dāng)x1時(shí),f′x)>0,

∴f(x)在x=1處取得極小值,與題意不符;

當(dāng)a=﹣6,b=9時(shí),f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)

當(dāng)x<1時(shí),f′(x)>0,當(dāng)1<x<3時(shí),f′(x)<0,

∴f(x)在x=1處取得極大值,符合題意;

=

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩點(diǎn)分別在軸和軸上運(yùn)動(dòng),且,若動(dòng)點(diǎn)滿足.

1)求出動(dòng)點(diǎn)P的軌跡對(duì)應(yīng)曲線C的標(biāo)準(zhǔn)方程;

2)一條縱截距為2的直線與曲線C交于P,Q兩點(diǎn),若以PQ直徑的圓恰過(guò)原點(diǎn),求出直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓點(diǎn), 是圓上任意一點(diǎn),線段的垂直平分線和半徑相交于點(diǎn)。

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

(Ⅱ)直線與點(diǎn)的軌跡交于不同兩點(diǎn),且(其中 O 為坐標(biāo)

原點(diǎn)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABCA1B1C1的底面是邊長(zhǎng)為4的正三角形,AA1⊥平面ABC,AA12,MA1B1的中點(diǎn)

(1)求證MCAB;

(2)在棱CC1上是否存在點(diǎn)P,使得MC⊥平面ABP若存在,確定點(diǎn)P的位置若不存在,說(shuō)明理由

(3)若點(diǎn)PCC1的中點(diǎn)求二面角BAPC的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=lnx-x+a+1.

(1)若存在x∈(0,+∞),使得f(x)≥0成立,求a的取值范圍;

(2)求證:在(1)的條件下,當(dāng)x>1時(shí), x2+ax-a>xlnx+成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若有兩個(gè)零點(diǎn),則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, ,點(diǎn)的中點(diǎn),點(diǎn)為線段垂直平分線上的一點(diǎn),且,四邊形為矩形,固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得的內(nèi)切圓始終與切于線段的中點(diǎn),且在直線的同側(cè),在移動(dòng)過(guò)程中,當(dāng)取得最小值時(shí),點(diǎn)到直線的距離為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐SABC中,△ABC是等腰三角形,ABBC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,則點(diǎn)A到平面SBC的距離為(  )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案