【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點(diǎn),P是AD的延長(zhǎng)線與A1C1的延長(zhǎng)線的交點(diǎn),且PB1∥平面BDA1

(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

【答案】
(1)證明:連接B1A交BA1于O,

∵PB1∥平面BDA1,B1P面AB1P,面AB1P∩面BA1D=OD,

∴B1P∥OD,又O為B1A的中點(diǎn),

∴D為AP中點(diǎn),∴C1為A1P中點(diǎn),

∴△ACD≌△PC1D,∴CD=C1D.


(2)解:∵在直三棱柱ABC﹣A1B1C1中, ,

∴AB⊥AC,

以A1為坐標(biāo)原點(diǎn),以A1B1,A1C1A1A所在直線建立空間直角坐標(biāo)系如圖所示.

由(1)知C1為A1P中點(diǎn),

∴A1(0,0,0),B1(1,0,0), ,P(0,2,0),

, =(0,1, ),

設(shè)平面A1B1D的法向量

,

,取z=2,得y=﹣1,∴

,

設(shè)平面PB1D的法向量 ,

,

,取x=2,得y=1,2,

∴平面PB1D的法向量

設(shè)二面角A1﹣B1D﹣P平面角為θ,

,


【解析】(1)連接B1A交BA1于O,由已知條件推導(dǎo)出△ACD≌△PC1D,由此能夠證明CD=C1D;(2)以A1為坐標(biāo)原點(diǎn),以A1B1 , A1C1A1A所在直線建立空間直角坐標(biāo)系,利用向量法能夠求出二面角A1﹣B1D﹣P的正弦值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在凸四邊形ABCD中,AB=1,BC= ,AC⊥DC,CD= AC.設(shè)∠ABC=θ.

(1)若θ=30°,求AD的長(zhǎng);
(2)當(dāng)θ變化時(shí),求BD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為定義域上的奇函數(shù),且在上是單調(diào)遞增函數(shù),函數(shù),數(shù)列為等差數(shù)列,,且公差不為0,若,則( )

A. 45 B. 15 C. 10 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有兩臺(tái)不同機(jī)器AB生產(chǎn)同一種產(chǎn)品各10萬(wàn)件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績(jī)的莖葉圖如圖所示:

該產(chǎn)品的質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為優(yōu)秀;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為良好;鑒定成績(jī)達(dá)到的產(chǎn)品,質(zhì)量等級(jí)為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.

從等級(jí)為優(yōu)秀的樣本中隨機(jī)抽取兩件,記X為來(lái)自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫(xiě)出X的分布列,并求X的數(shù)學(xué)期望;

完成下列列聯(lián)表,以產(chǎn)品等級(jí)是否達(dá)到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過(guò)的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;

A生產(chǎn)的產(chǎn)品

B生產(chǎn)的產(chǎn)品

合計(jì)

良好以上含良好

合格

合計(jì)

已知優(yōu)秀等級(jí)產(chǎn)品的利潤(rùn)為12元件,良好等級(jí)產(chǎn)品的利潤(rùn)為10元件,合格等級(jí)產(chǎn)品的利潤(rùn)為5元件,A機(jī)器每生產(chǎn)10萬(wàn)件的成本為20萬(wàn)元,B機(jī)器每生產(chǎn)10萬(wàn)件的成本為30萬(wàn)元;該工廠決定:按樣本數(shù)據(jù)測(cè)算,兩種機(jī)器分別生產(chǎn)10萬(wàn)件產(chǎn)品,若收益之差達(dá)到5萬(wàn)元以上,則淘汰收益低的機(jī)器,若收益之差不超過(guò)5萬(wàn)元,則仍然保留原來(lái)的兩臺(tái)機(jī)器你認(rèn)為該工廠會(huì)仍然保留原來(lái)的兩臺(tái)機(jī)器嗎?

附:獨(dú)立性檢驗(yàn)計(jì)算公式:

臨界值表:

k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在四棱錐中,底面是邊長(zhǎng)為4的正方形,是正三角形,平面平面,分別是的中點(diǎn).

(1)求證:平面平面;

(2)若是線段上一點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)等比數(shù)列的前項(xiàng)和為,,且,成等差數(shù)列,數(shù)列滿足

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),數(shù)列的前項(xiàng)和為,若對(duì)任意,不等式 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線上,則當(dāng)點(diǎn)到點(diǎn)的距離與點(diǎn)到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某飛行器在4千米高空飛行,從距著陸點(diǎn)A的水平距離10千米處開(kāi)始下降,已知下降飛行軌跡為某三次函數(shù)圖象的一部分,則該函數(shù)的解析式為(

A.y= x
B.y= x3 x
C.y= x3﹣x
D.y=﹣ x3+ x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E:的焦距為2,一條準(zhǔn)線方程為x=,A,B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),點(diǎn)P,Q在的橢圓上,且點(diǎn)P在第一象限.

(1)求橢圓E的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)P,Q關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,且PQ⊥AB,求四邊形ABCD的面積;

(3)若AP,BQ的斜率互為相反數(shù),求證:PQ斜率為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案