【題目】將的方格表中的某些小方格染黑,使得不存在由三個黑色小方格構(gòu)成的形(共四種情形).求最多有多少個小方格被染色?
【答案】
【解析】
用歸納法證明:方格表最多有個方格被染色.
首先,將第一行和第三行,最后一行染色.顯然滿足條件,且被染色格數(shù)目為.
其次證明:若有個格被染色,則存在形.
當(dāng)時,方格表有7個格被染色,顯然存在形.
設(shè)當(dāng)時,結(jié)論成立.
則當(dāng)時,將方格表左上角拿出方格表.
若其中有個格被染色,由歸納假設(shè),其中有形.
若其中有至多格被染色,則剩下大形的兩行兩列中共有至少格被染色.
將大形豎直方向拿出行,至多有個格被染色才沒有形.
同理,橫方向行至多有個格被染色.但只有右下角一格未處理,即使其被染色,還有一個染色格.無論其在何處,必有形.
故當(dāng)時,結(jié)論成立.
綜上,最多有個方格被染色.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若,當(dāng)時,求的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)有唯一的零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線過點,其參數(shù)方程為(為參數(shù),,以為極點,軸非負半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面上有7個點,每三點的兩兩連線都組成一個不等邊三角形.求證:一定可以找到4對三角形,使每對三角形的公共邊既是其中一個三角形的最長邊又是另一個三角形的最短邊.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線的焦點的直線交拋物線于兩點,拋物線在處的切線交于.
(1)求證:;
(2)設(shè),當(dāng)時,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從1,2,…,2011中最少應(yīng)選出多少個不同的數(shù),才能保證選出的數(shù)中必存在三個不同的數(shù)構(gòu)成一個三角形的三邊長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.
該公司將近天,每天攬件數(shù)量統(tǒng)計如下:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
(1)某人打算將, , 三件禮物隨機分成兩個包裹寄出,求該人支付的快遞費不超過元的概率;
(2)該公司從收取的每件快遞的費用中抽取元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.前臺工作人員每人每天攬件不超過件,工資元,目前前臺有工作人員人,那么,公司將前臺工作人員裁員人對提高公司利潤是否更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩名射擊運動員分別對一目標(biāo)射擊一次,甲射中的概率為0.8,乙射中的概率為0.9,求:
(1)2人都射中目標(biāo)的概率;
(2)2人中恰有1人射中目標(biāo)的概率;
(3)2人至少有1人射中目標(biāo)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某高校學(xué)生喜歡使用手機支付是否與性別有關(guān),抽取了部分學(xué)生作為樣本,統(tǒng)計后作出如圖所示的等高條形圖,則下列說法正確的是( )
A.喜歡使用手機支付與性別無關(guān)
B.樣本中男生喜歡使用手機支付的約
C.樣本中女生喜歡使用手機支付的人數(shù)比男生多
D.女生比男生喜歡使用手機支付的可能性大些
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com