已知有公共焦點(diǎn)的橢圓與雙曲線中心為原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F2,且它們在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,雙曲線的離心率的取值范圍為(1,2).則該橢圓的離心率的取值范圍是__________.
如圖,設(shè)橢圓的長半軸長,半焦距分別為a1,c,雙曲線的半實(shí)軸長,半焦距分別為a2,c,

|PF1|=m,|PF2|
=|F1F2|=n,

問題轉(zhuǎn)化為:已知1<<2,求的取值范圍.
由1<<2知<<1,
<<2,因此<+1<3,
<<3,所以<<.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對應(yīng)的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,離心率為;雙曲線的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦,的中點(diǎn),當(dāng)直線交于兩點(diǎn)時,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個焦點(diǎn)為,且離心率為
(1)求橢圓方程;
(2)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),當(dāng) 時,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的左右焦點(diǎn)為、,一直線過交橢圓于兩點(diǎn),則的周長為   (  )
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在與橢圓交于兩點(diǎn)的直線,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為,點(diǎn)在線段的垂直平分線上,且,求的值.

查看答案和解析>>

同步練習(xí)冊答案