【題目】甲、乙兩人某次飛鏢游戲中的成績?nèi)缦拢杭祝?/span>8,6,7,7,8,10,9,8,7,8; 乙:9,10,6,7,9,9,10,8,9,10.其中甲的成績可用如圖(1)所示的打點圖(或點狀圖)表示,每個成績上面的點的個數(shù)表示這個成績出現(xiàn)的次數(shù).在圖(2)中作出乙的成績的打點圖,并由圖寫出關(guān)于甲、乙成績比較的兩個統(tǒng)計結(jié)論.
(1) (2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年春節(jié)期間,某服裝超市舉辦了一次有獎促銷活動,消費(fèi)每超過元(含元),均可抽獎一次,抽獎方案有兩種,顧客只能選擇其中的一種.方案一:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,一次性摸出個球,其中獎規(guī)則為:若摸到個紅球,享受免單優(yōu)惠;若摸出個紅球則打折,若摸出個紅球,則打折;若沒摸出紅球,則不打折.方案二:從裝有個形狀、大小完全相同的小球(其中紅球個,黑球個)的抽獎盒中,有放回每次摸取球,連摸次,每摸到次紅球,立減元.
(1)若兩個顧客均分別消費(fèi)了元,且均選擇抽獎方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿元,試從概率的角度比較該顧客選擇哪一種抽獎方案更合算?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古代數(shù)學(xué)名著《九章算術(shù)》中的“盈不足”問題知兩鼠穿垣.今有垣厚5尺,兩鼠對穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.問:何日相逢?題意是:由垛厚五尺(舊制長度單位, 尺= 寸)的墻壁,大小兩只老鼠同時從墻的兩面,沿一直線相對打洞.大鼠第一天打進(jìn)尺,以后每天的速度為前一天的倍;小鼠第一天也打進(jìn)尺,以后每天的進(jìn)度是前一天的一半.它們多久可以相遇?
A. 天 B. 天 C. 天 D. 天
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某外商到一開發(fā)區(qū)投資72萬美元建起一座蔬菜加工廠,第一年各種經(jīng)費(fèi)12萬美元,以后每年增加4萬美元,每年銷售蔬菜收入50萬美元。設(shè)表示前年的純收入(前年的總收入一前年的總支出一投資額)
(1)試寫出的關(guān)系式.
(2) 該開發(fā)商從第幾年開始獲利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A在直線2x-3y+5=0上移動,點P為連接M(4,-3)和點A的線段的中點,則點P的軌跡方程為
A. 2x-3y-6=0 B. 2x-3y+2=0 C. 2x-3y+11=0 D. 2x+3y-6=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下面類比推理:
①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類比推出“ (c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復(fù)數(shù)集)”.
其中結(jié)論正確的個數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在相應(yīng)位置,并求出函數(shù)的解析式;
(2)把的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移個單位長度,得到函數(shù)的圖象,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動。在1859年的時候,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計1000以內(nèi)的素數(shù)的個數(shù)為_________(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)將甲、乙兩個學(xué)生在高二的6次數(shù)學(xué)測試的成績(百分制)制成如圖所示的莖葉圖,進(jìn)人高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個學(xué)生的考試數(shù)學(xué)成績預(yù)計同時有了大的提升.若甲(乙)的高二任意一次考試成績?yōu)?/span>,則甲(乙)的高三對應(yīng)的考試成績預(yù)計為(若>100.則取為100).若已知甲、乙兩個學(xué)生的高二6次考試成績分別都是由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個學(xué)生的當(dāng)次成績之差的絕對值.
(I)試預(yù)測:在將要進(jìn)行的高三6次測試中,甲、乙兩個學(xué)生的平均成績分別為多少?(計算結(jié)果四舍五入,取整數(shù)值)
(Ⅱ)求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com