【題目】在平面直角坐標(biāo)系中,已知,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)若點(diǎn)M為(1)中軌跡上一動(dòng)點(diǎn),,直線MA與的另一個(gè)交點(diǎn)為N;記,若t值與點(diǎn)M位置無關(guān),則稱此時(shí)的點(diǎn)A為“穩(wěn)定點(diǎn)”.是否存在 “穩(wěn)定點(diǎn)”?若存在,求出該點(diǎn);若不存在,請(qǐng)說明理由.
【答案】(1);(2)答案不唯一,答案見解析.
【解析】
(1)設(shè),運(yùn)用向量的坐標(biāo)運(yùn)算并化簡(jiǎn),求得動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè),設(shè)直線的方程為,與軌跡聯(lián)立,并表示出根與系數(shù)的關(guān)系,將化簡(jiǎn)得,分和去絕對(duì)值,看是否存在t值與點(diǎn)M位置無關(guān).
解:(1)設(shè),則
由可知:,化簡(jiǎn)得
即動(dòng)點(diǎn)的軌跡的方程為:
(2)設(shè),設(shè)直線的方程為,聯(lián)立
得..
則
則
①當(dāng)時(shí),同號(hào),
,
不論取何值,均與有關(guān),即時(shí),不是“穩(wěn)定點(diǎn)”.
②當(dāng)時(shí),異號(hào).
又
當(dāng)且僅當(dāng),即時(shí),與無關(guān),此時(shí)的點(diǎn)為“穩(wěn)定點(diǎn)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:經(jīng)過定點(diǎn),其左右集點(diǎn)分別為,且,過右焦且與坐標(biāo)軸不垂直的直線l與橢圈交于P,Q兩點(diǎn).
(1)求橢圓C的方程:
(2)若O為坐標(biāo)原點(diǎn),在線段上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)南宋數(shù)學(xué)家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)展開式的系數(shù)規(guī)律,去掉所有為1的項(xiàng),依次構(gòu)成2,3,3,4,6,4,5,10,10,5,6…,則此數(shù)列的前50項(xiàng)和為( )
A.2025B.3052C.3053D.3049
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C1:(a>b>0)的右焦點(diǎn)F與拋物線C2的焦點(diǎn)重合,C1的中心與C2的頂點(diǎn)重合.過F且與x軸重直的直線交C1于A,B兩點(diǎn),交C2于C,D兩點(diǎn),且|CD|=|AB|.
(1)求C1的離心率;
(2)若C1的四個(gè)頂點(diǎn)到C2的準(zhǔn)線距離之和為12,求C1與C2的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱ABC-A1B1C1的底面是正三角形,側(cè)面BB1C1C是矩形,M,N分別為BC,B1C1的中點(diǎn),P為AM上一點(diǎn),過B1C1和P的平面交AB于E,交AC于F.
(1)證明:AA1∥MN,且平面A1AMN⊥EB1C1F;
(2)設(shè)O為△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直線B1E與平面A1AMN所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐中,側(cè)面是邊長(zhǎng)為的正三角形,,平面平面,把平面沿旋轉(zhuǎn)至平面的位置,記點(diǎn)旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)為(不在平面內(nèi)),、分別是、的中點(diǎn).
(1)求證:;
(2)求三棱錐的體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),過的動(dòng)直線交拋物線于,兩點(diǎn).當(dāng)直線與軸垂直時(shí),.
(1)求拋物線的方程;
(2)設(shè)直線的斜率為1且與拋物線的準(zhǔn)線相交于點(diǎn),拋物線上存在點(diǎn)使得直線,,的斜率成等差數(shù)列,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系.直線的參數(shù)方程為(為參數(shù)),圓的參數(shù)方程為(為參數(shù)).
(1)寫出直線的普通方程和圓的極坐標(biāo)方程;
(2)已知點(diǎn),直線與圓交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+2|+|x﹣3|.
(1)求不等式f(x)≥8的解集;
(2)若a>0,b>0,且函數(shù)F(x)=f(x)﹣3a﹣2b有唯一零點(diǎn)x0,證明:f(x0).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com