【題目】在△ABC中,角A,B,C的對邊分別是a,b,c,若 + =2a,b= ,則△ABC面積是

【答案】1
【解析】解:∵ + =2a,可得: ,
=2sinA,
∴sin2C+sin2B=2(sinBcosC+cosBsinC)sinBsinC=2sin2BsinCcosC+2sin2CsinBcosB,
∴sin2C(1﹣2sinBcosB)+sin2B(1﹣2sinCcosC)=0,
∴sin2C(sinB﹣cosB)2+sin2B(sinC﹣cosC)2=0,
∴sinB=cosB,sinC=cosC,可得:B=C=45°,
又∵b= ,
∴SABC= ×( 2=1.
所以答案是:1.
【考點(diǎn)精析】本題主要考查了正弦定理的定義的相關(guān)知識點(diǎn),需要掌握正弦定理:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取一個年份,對西安市該年4月份的天氣情況進(jìn)行統(tǒng)計(jì),結(jié)果如下:

日期

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

天氣

日期

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

天氣

(1)4月份任取一天,估計(jì)西安市在該天不下雨的概率;

(2)西安市某學(xué)校擬從4月份的一個晴天開始舉行連續(xù)2天的運(yùn)動會,估計(jì)運(yùn)動會期間不下雨的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)所給的條件求直線的方程:

(1)直線過點(diǎn)(-4,0),傾斜角的正弦值為;

(2)直線過點(diǎn)(5,10),到原點(diǎn)的距離為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是平行四邊形,∠BCD=135°,側(cè)面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F(xiàn)分別為BC,AD的中點(diǎn),點(diǎn)M在線段PD上. (Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)如果直線ME與平面PBC所成的角和直線ME與平面ABCD所成的角相等,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足:

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:已知二次函數(shù)的圖像經(jīng)過,求證:這個二次函數(shù)的圖像關(guān)于直線對稱,根據(jù)已知消息,題中二次函數(shù)圖像不具有的性質(zhì)是( ).

A. 軸上的截線段長是 B. 軸交于點(diǎn)

C. 頂點(diǎn) D. 過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a6=55,a2+a7=16.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)等比數(shù)列{bn}滿足:b1=a1 , b2=a2﹣1,若數(shù)列cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個公益廣告說:若不注意節(jié)約用水,那么若干年后,最有一滴水只能是我們的眼淚。我國是水資源匱乏的國家。為鼓勵節(jié)約用水,某市打算出臺一項(xiàng)水費(fèi)政策措施,規(guī)定:每一季度每人用水量不超過5噸時,每噸水費(fèi)收基本價1.3元;若超過5噸而不超過6噸時,超過部分的水費(fèi)加收200%;若超過6噸而不超過7噸時,超過部分的水費(fèi)加收400%。設(shè)某人本季度實(shí)際用水量為噸,應(yīng)交水費(fèi)為f(x),(1)求的值;(2)試求出函數(shù)f(x)的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當(dāng)促銷費(fèi)用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費(fèi)用),產(chǎn)品的銷售價格定為萬元/萬件.

(1)將該產(chǎn)品的利潤萬元表示為促銷費(fèi)用萬元的函數(shù);

2)促銷費(fèi)用投入多少萬元時,廠家的利潤最大.

查看答案和解析>>

同步練習(xí)冊答案