【題目】已知三次函數(shù),下列命題正確的是 .

函數(shù)關(guān)于原點(diǎn)中心對稱;

,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與交于兩點(diǎn),則這四個(gè)點(diǎn)的橫坐標(biāo)滿足關(guān)系;

為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為

,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個(gè)正方形.

【答案】①②④

【解析】

試題分析:函數(shù)滿足是奇函數(shù),所以關(guān)于原點(diǎn)0,0成中心對稱,正確;因?yàn)?/span>,根據(jù)切線平行得到,所以,根據(jù)可知,,以點(diǎn)A為切點(diǎn)的切線方程為,整理得:,該切線方程與函數(shù)聯(lián)立可得,,所以,同理:,又因?yàn)?/span>,代入關(guān)系式可得,正確;可知,為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),此時(shí)滿足,, 所以,所以錯(cuò)誤;當(dāng)函數(shù)為

,設(shè)正方形ABCD的對角線AC所在的直線方程為,設(shè)正方形ABCD的對角線BD所在的直線方程為,,解得,所以,

同理,因?yàn)?/span>

所以

設(shè),,,當(dāng)時(shí),,等價(jià)于,解得,,所以正方形唯一確定,故正確選項(xiàng)為①②④.

【難點(diǎn)點(diǎn)睛】本題的難點(diǎn)是,計(jì)算量都比較大,的難點(diǎn)是過點(diǎn)A的切線方程與函數(shù)方程聯(lián)立,得到交點(diǎn)C的坐標(biāo),這個(gè)求交點(diǎn)的過程需要計(jì)算能力比較好才可以求解出結(jié)果;的難點(diǎn)是需根據(jù)正方形的幾何關(guān)系,轉(zhuǎn)化為代數(shù)運(yùn)算,這種化歸與轉(zhuǎn)化會讓很多同學(xué)感覺無從下手,同時(shí)運(yùn)算量也比較大,稍有疏忽,就會出錯(cuò),所以平時(shí)訓(xùn)練時(shí),帶參數(shù)的化簡需所練習(xí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)點(diǎn)F1(-c,0)、F2(c,0)分別是橢圓C:左、右焦點(diǎn),P為橢圓C上任意一點(diǎn),且最小值為0.

求橢圓C的方程;

若動直線l1,l2均與橢圓C相切,且l1l2,試探究在x軸上是否存在定點(diǎn)B,點(diǎn)B到l1,l2的距離之積恒為1?若存在,請求出B坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)為奇函數(shù),為常數(shù).

求實(shí)數(shù)的值;

求函數(shù)的單調(diào)區(qū)間;

若對于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某校學(xué)生的視力情況,現(xiàn)采用隨機(jī)抽樣的方式從該校的兩班中各抽5名學(xué)生進(jìn)行視力檢測,檢測的數(shù)據(jù)如下:

5名學(xué)生的視力檢測結(jié)果是: .

5名學(xué)生的視力檢測結(jié)果是: .

1)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪個(gè)班的學(xué)生視力較好?并計(jì)算班的5名學(xué)生視力的方差;

2)現(xiàn)從班上述5名學(xué)生中隨機(jī)選取2名,求這2名學(xué)生中至少有1名學(xué)生的視力低于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)用定義證明:函數(shù)在區(qū)間上是減函數(shù);

(2)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6名奧運(yùn)會志愿者,其中志愿者通曉日語, 通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.

(1)求被選中的概率;

(2)求不全被選中的概率;

(3)若6名奧運(yùn)會志愿者每小時(shí)派兩人值班,現(xiàn)有兩名只會日語的運(yùn)動員到來,求恰好遇到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別是直線上的兩個(gè)動點(diǎn),線段的長為,的中點(diǎn).

(1)求動點(diǎn)的軌跡的方程;

(2)若過點(diǎn)(1,0)的直線與曲線交于不同兩點(diǎn)

當(dāng)時(shí),求直線的方程;

試問在軸上是否存在點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)是直線的一動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.

(1)當(dāng)切線的長度為時(shí),求點(diǎn)的坐標(biāo);

(2) 的外接圓為圓,試問:當(dāng)在直線上運(yùn)動時(shí),圓是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,說明理由.

(3)求線段長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)是自然對數(shù)的底數(shù),曲線在點(diǎn)處的切線與軸平行

1的值;

2的單調(diào)區(qū)間

3設(shè),其中的導(dǎo)函數(shù)證明:對任意,

查看答案和解析>>

同步練習(xí)冊答案