【題目】現(xiàn)有6名奧運(yùn)會志愿者,其中志愿者通曉日語, 通曉俄語, 通曉韓語,從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求被選中的概率;
(2)求和不全被選中的概率;
(3)若6名奧運(yùn)會志愿者每小時派兩人值班,現(xiàn)有兩名只會日語的運(yùn)動員到來,求恰好遇到的概率.
【答案】(1);(2);(3).
【解析】試題分析:
(1)可用列舉法列出從6人中選出日語、俄語和韓語志愿者各1名的一切可能的結(jié)果組成的基本事件,共8個,其中有的有4個,由概率公式計算可得;
(2)可從對立事件考慮, 全被選中有兩種可能,由此可得概率;
(3)6人中任選2人有15種選法,而恰好遇到只有一種可能,故可得概率.
試題解析:
(1)從6人中選出日語、俄語和韓語志愿者各1名,其一切可能的結(jié)果組成的基本事件是: , , , , , , , . 由8個基本事件組成,由于每一個基本事件被抽取的機(jī)會均等,因此,這些基本事件的發(fā)生是等可能的.
用表示“恰被選中”這一事件,則為, , , ,事件由4個基本事件組成,因而.
(2)用表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于,事件有2個基本事件組成,
所以,由對立事件的概率公式得.
(3)∵6名奧運(yùn)會志愿者每小時派兩人值班,共有種情況,
而恰好遇到的情況只有1種,
故恰好遇到的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的不等式x2+2ax+4>0對于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn)(),過點(diǎn)任作直線與橢圓相交于, 兩點(diǎn),設(shè)直線, , 的斜率分別為, , , ,試求, 滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三次函數(shù),下列命題正確的是 .
①函數(shù)關(guān)于原點(diǎn)中心對稱;
②以,兩不同的點(diǎn)為切點(diǎn)作兩條互相平行的切線,分別與交于兩點(diǎn),則這四個點(diǎn)的橫坐標(biāo)滿足關(guān)系;
③以為切點(diǎn),作切線與圖像交于點(diǎn),再以點(diǎn)為切點(diǎn)作直線與圖像交于點(diǎn),再以點(diǎn)作切點(diǎn)作直線與圖像交于點(diǎn),則點(diǎn)橫坐標(biāo)為;
④若,函數(shù)圖像上存在四點(diǎn),使得以它們?yōu)轫旤c(diǎn)的四邊形有且僅有一個正方形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個玩具的各個面上上分別寫著數(shù)字1,2,3,5,同時投擲這兩枚玩具一次,記為兩個朝下的面上的數(shù)字之和.
(1)求事件“不小于6”的概率;
(2)“為奇數(shù)”的概率和“為偶數(shù)”的概率是不是相等?證明你作出的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若是函數(shù)的極值點(diǎn),求實數(shù)的值;
(2)若對任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,橢圓過點(diǎn),直線交軸于,且,為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)是橢圓的上頂點(diǎn),過點(diǎn)分別作直線交橢圓于,兩點(diǎn),設(shè)這兩條直線的斜率分別為,且,證明:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框為矩形,相關(guān)數(shù)據(jù)如圖2所示.
(1)設(shè)中點(diǎn)為,在直線上找一點(diǎn),使得平面,并說明理由;
(2)若二面角的平面角的余弦值為,求四棱錐的外接球的表面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com