【題目】已知函數(shù)
(1)用“五點法”作出在長度為一個周期的閉區(qū)間上的簡圖;
(2)寫出的對稱中心與單調(diào)遞增區(qū)間,并求振幅、周期、頻率、相位及初相;
(3)求的最大值以及取得最大值時x的集合.
【答案】(1)見解析;(2)見解析;(3),
【解析】
(1)根據(jù)正弦函數(shù)五點法作圖的方法,即可得到圖象.
(2)根據(jù)正弦函數(shù)的對稱性以及單調(diào)性,由的中的基本概念即可得到結(jié)論.
(3)根據(jù)三角函數(shù)函數(shù)的性質(zhì),即可得到答案.
(1) 根據(jù)五點法作圖法列表得:
0 | |||||
1 | 3 | 1 |
| 1 |
描點,連線如圖:
(2) 函數(shù)
則函數(shù)的對稱中心滿足:,
即,
所以函數(shù)的對稱中心為
函數(shù)的單調(diào)遞增區(qū)間滿足:
即
所以函數(shù)的單調(diào)遞增區(qū)間為:
,
則函數(shù)振幅為2、周期、頻率 、相位為,初相為;
(3)當,
即時函數(shù)有最大值3,
所以的最大值為3,此時 的取值集合為:
科目:高中數(shù)學 來源: 題型:
【題目】已知圓:與直線:,動直線過定點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與圓相交于、兩點,點M是PQ的中點,直線與直線相交于點N.探索是否為定值,若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場預(yù)計全年分批購入電視機3600臺,其中每臺價值2000元,每批購入的臺數(shù)相同,且每批均需付運費400元,儲存購入的電視機全年所付保管費與每批購入的電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需要支付運費和保管費共43600元.
(1)求的值;
(2)請問如何安排每批進貨的數(shù)量,使支付運費與保管費的和最少?并求出相應(yīng)最少費用.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點分別為過的直線交橢圓于兩點,且
(1)若,求橢圓的標準方程
(2)若求橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖半圓的直徑為4,為直徑延長線上一點,且,為半圓周上任一點,以為邊作等邊(、、按順時針方向排列)
(1)若等邊邊長為,,試寫出關(guān)于的函數(shù)關(guān)系;
(2)問為多少時,四邊形的面積最大?這個最大面積為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的右焦點為,過的直線與交于,兩點,點的坐標為.當軸時,的面積為.
(1)求橢圓的標準方程;
(2)設(shè)直線、的斜率分別為、,證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在空間中,過點A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個不同的平面,對空間任意一點P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( )
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù),當.
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫出函數(shù)的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程有三個不同的解,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為R,當x>0時滿足:①f(x)﹣2f(﹣x)=0;②對任意x1>0,x2>0,x1≠x2有(x1﹣x2)(f(x1)﹣f(x2))>0恒成立:③f(4)=2f(2)=2,則不等式x[f(x)﹣1]>0的解集為_____(用區(qū)間表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com